首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dengue is considered non-endemic to mainland China. However, travellers frequently import the virus from overseas and local mosquito species can then spread the disease in the population. As a consequence, mainland China still experiences large dengue outbreaks. Temperature plays a key role in these outbreaks: it affects the development and survival of the vector and the replication rate of the virus. To better understand its implication in the transmission risk of dengue, we developed a delay differential equation model that explicitly simulates temperature-dependent development periods and tested it with collected field data for the Asian tiger mosquito, Aedes albopictus. The model predicts mosquito occurrence locations with a high accuracy (Cohen’s κ of 0.78) and realistically replicates mosquito population dynamics. Analysing the infection dynamics during the 2014 dengue outbreak that occurred in Guangzhou showed that the outbreak could have lasted for another four weeks if mosquito control interventions had not been undertaken. Finally, we analyse the dengue transmission risk in mainland China. We find that southern China, including Guangzhou, can have more than seven months of dengue transmission per year while even Beijing, in the temperate north, can have dengue transmission during hot summer months. The results demonstrate the importance of using detailed vector and infection ecology, especially when vector-borne disease transmission risk is modelled over a broad range of climatic zones.  相似文献   

2.
Dengue fever is a systemic viral infection of epidemic proportions in tropical countries. The incidence of dengue fever is ever increasing and has doubled over the last few decades. Estimated 50million new cases are detected each year and close to 10000 deaths occur each year. Epidemics are unpredictable and unprecedented. When epidemics occur, health services are over whelmed leading to overcrowding of hospitals. At present there is no evidence that dengue epidemics can be predicted. Since the breeding of the dengue mosquito is directly influenced by environmental factors, it is plausible that epidemics could be predicted using weather data. We hypothesized that there is a mathematical relationship between incidence of dengue fever and environmental factors and if such relationship exists, new cases of dengue fever in the succeeding months can be predicted using weather data of the current month. We developed a mathematical model using machine learning technique. We used Island wide dengue epidemiology data, weather data and population density in developing the model. We used incidence of dengue fever, average rain fall, humidity, wind speed, temperature and population density of each district in the model. We found that the model is able to predict the incidence of dengue fever of a given month in a given district with precision (RMSE between 18- 35.3). Further, using weather data of a given month, the number of cases of dengue in succeeding months too can be predicted with precision (RMSE 10.4—30). Health authorities can use existing weather data in predicting epidemics in the immediate future and therefore measures to prevent new cases can be taken and more importantly the authorities can prepare local authorities for outbreaks.  相似文献   

3.
BackgroundDespite dengue dynamics being driven by complex interactions between human hosts, mosquito vectors and viruses that are influenced by climate factors, an operational model that will enable health authorities to anticipate the outbreak risk in a dengue non-endemic area has not been developed. The objectives of this study were to evaluate the temporal relationship between meteorological variables, entomological surveillance indices and confirmed dengue cases; and to establish the threshold for entomological surveillance indices including three mosquito larval indices [Breteau (BI), Container (CI) and House indices (HI)] and one adult index (AI) as an early warning tool for dengue epidemic.Conclusion/SignificanceThere was little evidence of quantifiable association among vector indices, meteorological factors and dengue transmission that could reliably be used for outbreak prediction. Our study here provided the proof-of-concept of how to search for the optimal model and determine the threshold for dengue epidemics. Since those factors used for prediction varied, depending on the ecology and herd immunity level under different geological areas, different thresholds may be developed for different countries using a similar structure of the two-stage model.  相似文献   

4.
Research is needed to create early warnings of dengue outbreaks to inform stakeholders and control the disease. This analysis composes of a comparative set of prediction models including only meteorological variables; only lag variables of disease surveillance; as well as combinations of meteorological and lag disease surveillance variables. Generalized linear regression models were used to fit relationships between the predictor variables and the dengue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from 2011 to 2013 were used for external validation purposed of prediction accuracy of the model. Model fit were evaluated based on prediction performance in terms of detecting epidemics, and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An optimal combination of meteorology and autoregressive lag terms of dengue counts in the past were identified best in predicting dengue incidence and the occurrence of dengue epidemics. Past data on disease surveillance, as predictor alone, visually gave reasonably accurate results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance and meteorological data including lag patterns up to a few years in the past showed most predictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation showed poorer results than the internal validation, but still showed skill in detecting outbreaks up to two months ahead. Prior studies support the fact that past meteorology and surveillance data can be predictive of dengue. However, to a less extent has prior research shown how the longer-term past disease incidence data, up to years, can play a role in predicting outbreaks in the coming years, possibly indicating cross-immunity status of the population.  相似文献   

5.
A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus.  相似文献   

6.
We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends on seasonal variation in temperature and on the availability of breeding sites. We also show that the arrival date of an infected human in a susceptible population dramatically affects the distribution of the final size of epidemics and that early outbreaks have a low probability. However, early outbreaks are likely to produce large epidemics because they have a longer time to evolve before the winter extinction of vectors. Our model could be used to estimate the risk and final size of epidemic outbreaks in regions with seasonal climatic variations.  相似文献   

7.

Background

Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an early warning system.

Methodology/Principal Findings

Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March–April) lagged the warmest temperature by 1–2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January–February–March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October–November–December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively.

Conclusions/Significance

The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue management in other countries.  相似文献   

8.

Background

Periodic outbreaks of dengue fever occur in the United States Virgin Islands. In June 2005, an outbreak of dengue virus (DENV) serotype-2 with cases of dengue hemorrhagic fever (DHF) was detected in St. Croix, US Virgin Islands. The objective of this report is to describe this outbreak of DENV-2 and the findings of a case-control study examining risk factors for DHF.

Methodology/Principal Findings

This is the largest dengue outbreak ever recorded in St. Croix, with 331 suspected dengue cases reported island-wide during 2005 (62.2 cases/10,000 population); 54% were hospitalized, 21% had at least one hemorrhagic manifestation, 28% had thrombocytopenia, 5% had DHF and 1 patient died. Eighty-nine laboratory-positive hospitalized patients were identified. Of these, there were 15 (17%) who met the WHO criteria for DHF (cases) and 74 (83%) who did not (controls). The only variable significantly associated with DHF on bivariate or multivariable analysis was age, with an adjusted odds ratio (95% confidence interval) of 1.033 (1.003,1.064).

Conclusions/Significance

During this outbreak of DENV-2, a high proportion of cases developed DHF and increasing age was significantly associated with DHF.  相似文献   

9.
近年来福建省登革热(Dengue fever,DF)输入性病例持续存在,且登革热的主要传播媒介白纹伊蚊在全省内广泛分布,为了解福建省福州市登革热的媒介白纹伊蚊携带登革病毒(Dengue virus,DENV)状况,2017年10月7日在福州市台江区元一花园小区内开展伊蚊监测,采用双层叠帐法捕获255只白纹伊蚊蚊体研磨液上清提取核酸后用实时荧光RT-PCR法检测DENV特异性核酸,将检测阳性的蚊体研磨液上清接种C6/36细胞进行病毒分离,成功分离到1株DENV病毒株mosquito13/Fujian/2017;经实时荧光RT-PCR法鉴定所分离病毒株的血清型为I型;利用型特异性引物通过RT-PCR扩增病毒E基因并测序进行分子遗传特性分析;E基因核苷酸和氨基酸同源性分析显示,该毒株与2017年10月17日同小区本地登革热病例血清中分离得到的登革毒株E基因序列完全一致,与越南2014年分离株KT825033/Vietnam/2014核苷酸(99.7%)和氨基酸(99.8%)同源性最高;系统进化树分析表明所分离登革病毒毒株的基因型为I型,与东南亚地区的越南,泰国,柬埔寨等国家进化关系相近,可能输入来源于东南亚国家。本研究证实了登革热外潜伏期的存在以及白纹伊蚊在登革热疫情传播过程中的媒介作用,提示在登革热的防控工作中媒介登革病毒监测、检测的重要性,也提示福建省需要加强输入来源监测,特别是东南亚入境人员的监测。  相似文献   

10.
The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century. Received: 3 March 1999 / Revised: 24 November 1999 / Accepted: 24 January 2000  相似文献   

11.
An outbreak detection and response system, using time series moving percentile method based on historical data, in China has been used for identifying dengue fever outbreaks since 2008. For dengue fever outbreaks reported from 2009 to 2012, this system achieved a sensitivity of 100%, a specificity of 99.8% and a median time to detection of 3 days, which indicated that the system was a useful decision tool for dengue fever control and risk-management programs in China.  相似文献   

12.
Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011–2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011–2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.  相似文献   

13.
Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010–2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important environmental and human factors.  相似文献   

14.
Describing the geographic spread of dengue disease by traveling waves   总被引:1,自引:0,他引:1  
Dengue is a human disease transmitted by the mosquito Aedes aegypti. For this reason geographical regions infested by this mosquito species are under the risk of dengue outbreaks. In this work, we propose a mathematical model to study the spatial dissemination of dengue using a system of partial differential reaction-diffusion equations. With respect to the human and mosquito populations, we take into account their respective subclasses of infected and uninfected individuals. The dynamics of the mosquito population considers only two subpopulations: the winged form (mature female mosquitoes), and an aquatic population (comprising eggs, larvae and pupae). We disregard the long-distance movement by transportation facilities, for which reason the diffusion is considered restricted only to the winged form. The human population is considered homogeneously distributed in space, in order to describe localized dengue dissemination during a short period of epidemics. The cross-infection is modeled by the law of mass action. A threshold value as a function of the model's parameters is obtained, which determines the rate of dengue dissemination and the risk of dengue outbreaks. Assuming that an area was previously colonized by the mosquitoes, the rate of disease dissemination is determined as a function of the model's parameters. This rate of dissemination of dengue disease is determined by applying the traveling wave solutions to the corresponding system of partial differential equations.  相似文献   

15.
16.
Climate change can influence the transmission of vector-borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian tiger mosquito (Aedes albopictus), which can transmit pathogens that cause chikungunya, dengue fever, yellow fever and various encephalitides. Using a general circulation model at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the twenty-first century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that approximately 2.4 billion individuals in a land area of nearly 20 million km2 will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.  相似文献   

17.

Background

Dengue fever is a leading cause of severe illness and hospitalization in Taiwan. This study sought to elucidate the linkage between dengue fever incidence and climate factors.

Results

The result indicated that temperature, accumulated rainfall, and sunshine play an important role in the transmission cycles of dengue fever. A predictive model equation plots dengue fever incidence versus temperature, rainfall, and sunshine, and it suggests that temperature, rainfall, and sunshine are significantly correlated with dengue fever incidence.

Conclusions

The data suggests that climate factors are important determinants of dengue fever in southern Taiwan. Dengue fever viruses and the mosquito vectors are sensitive to their environment. Temperature, rainfall and sunshine have well-defined roles in the transmission cycle. This finding suggests that control of mosquito by climatic factor during high temperature seasons may be an important strategy for containing the burden of dengue fever.
  相似文献   

18.

Background

Dengue fever is endemic in Malaysia, with frequent major outbreaks in urban areas. The major control strategy relies on health promotional campaigns aimed at encouraging people to reduce mosquito breeding sites close to people''s homes. However, such campaigns have not always been 100% effective. The concept of self-efficacy is an area of increasing research interest in understanding how health promotion can be most effective. This paper reports on a study of the impact of self-efficacy on dengue knowledge and dengue preventive behaviour.

Methods and Findings

We recruited 280 adults from 27 post-outbreak villages in the state of Terengganu, east coast of Malaysia. Measures of health promotion and educational intervention activities and types of communication during outbreak, level of dengue knowledge, level and strength of self-efficacy and dengue preventive behaviour were obtained via face-to-face interviews and questionnaires. A structural equation model was tested and fitted the data well (χ2 = 71.659, df = 40, p = 0.002, RMSEA = 0.053, CFI = 0.973, TLI = 0.963). Mass media, local contact and direct information-giving sessions significantly predicted level of knowledge of dengue. Level and strength of self-efficacy fully mediated the relationship between knowledge of dengue and dengue preventive behaviours. Strength of self-efficacy acted as partial mediator in the relationship between knowledge of dengue and dengue preventive behaviours.

Conclusions

To control and prevent dengue outbreaks by behavioural measures, health promotion and educational interventions during outbreaks should now focus on those approaches that are most likely to increase the level and strength of self-efficacy.  相似文献   

19.
BackgroundWith enough advanced notice, dengue outbreaks can be mitigated. As a climate-sensitive disease, environmental conditions and past patterns of dengue can be used to make predictions about future outbreak risk. These predictions improve public health planning and decision-making to ultimately reduce the burden of disease. Past approaches to dengue forecasting have used seasonal climate forecasts, but the predictive ability of a system using different lead times in a year-round prediction system has been seldom explored. Moreover, the transition from theoretical to operational systems integrated with disease control activities is rare.Methods and findingsWe introduce an operational seasonal dengue forecasting system for Vietnam where Earth observations, seasonal climate forecasts, and lagged dengue cases are used to drive a superensemble of probabilistic dengue models to predict dengue risk up to 6 months ahead. Bayesian spatiotemporal models were fit to 19 years (2002–2020) of dengue data at the province level across Vietnam. A superensemble of these models then makes probabilistic predictions of dengue incidence at various future time points aligned with key Vietnamese decision and planning deadlines. We demonstrate that the superensemble generates more accurate predictions of dengue incidence than the individual models it incorporates across a suite of time horizons and transmission settings. Using historical data, the superensemble made slightly more accurate predictions (continuous rank probability score [CRPS] = 66.8, 95% CI 60.6–148.0) than a baseline model which forecasts the same incidence rate every month (CRPS = 79.4, 95% CI 78.5–80.5) at lead times of 1 to 3 months, albeit with larger uncertainty. The outbreak detection capability of the superensemble was considerably larger (69%) than that of the baseline model (54.5%). Predictions were most accurate in southern Vietnam, an area that experiences semi-regular seasonal dengue transmission. The system also demonstrated added value across multiple areas compared to previous practice of not using a forecast. We use the system to make a prospective prediction for dengue incidence in Vietnam for the period May to October 2020. Prospective predictions made with the superensemble were slightly more accurate (CRPS = 110, 95% CI 102–575) than those made with the baseline model (CRPS = 125, 95% CI 120–168) but had larger uncertainty. Finally, we propose a framework for the evaluation of probabilistic predictions. Despite the demonstrated value of our forecasting system, the approach is limited by the consistency of the dengue case data, as well as the lack of publicly available, continuous, and long-term data sets on mosquito control efforts and serotype-specific case data.ConclusionsThis study shows that by combining detailed Earth observation data, seasonal climate forecasts, and state-of-the-art models, dengue outbreaks can be predicted across a broad range of settings, with enough lead time to meaningfully inform dengue control. While our system omits some important variables not currently available at a subnational scale, the majority of past outbreaks could be predicted up to 3 months ahead. Over the next 2 years, the system will be prospectively evaluated and, if successful, potentially extended to other areas and other climate-sensitive disease systems.  相似文献   

20.
Mosquito-borne diseases remain a significant threat to public health and economics. Since mosquitoes are quite sensitive to temperature, global warming may not only worsen the disease transmission case in current endemic areas but also facilitate mosquito population together with pathogens to establish in new regions. Therefore, understanding mosquito population dynamics under the impact of temperature is considerably important for making disease control policies. In this paper, we develop a stage-structured mosquito population model in the environment of a temperature-controlled experiment. The model turns out to be a system of periodic delay differential equations with periodic delays. We show that the basic reproduction number is a threshold parameter which determines whether the mosquito population goes to extinction or remains persistent. We then estimate the parameter values for Aedes aegypti, the mosquito that transmits dengue virus. We verify the analytic result by numerical simulations with the temperature data of Colombo, Sri Lanka where a dengue outbreak occurred in 2017.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号