首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adult beetles Aphthona lacertosa and Aphthona nigriscutis, used as biocontrol agents for leafy spurge, had a complex mixture of hydrocarbons on their cuticular surface consisting of alkanes, methylalkanes, alkenes and alkadienes as determined by gas chromatography-mass spectrometry. A trace amount of wax esters were present. In both species, the hydrocarbons were the major cuticular lipid class and the gas chromatographic profiles of the total hydrocarbons were similar. However, the profiles for the saturated hydrocarbon fraction were distinct for each species. Alkanes (n-alkanes and methyl-branched alkanes), alkenes and alkadienes comprised 26, 44 and 30%, respectively, for A. lacertosa, and 48, 26 and 26%, respectively, for A. nigriscutis, of the total hydrocarbons. The major methyl-branched hydrocarbons were 2-methylalkanes: 2-methyloctacosane and 2-methyltriacontane. The major monoene was hentriacontene and the major diene was tritriacontadiene. The species were unique in that a number of di- and trimethyl-branched alkanes were present in minor quantities in which the first methyl branch was on carbon 2 or 3. Examples of structures were 2,10-, 2,12-, 2,6-, 2,4- and 3,7-dimethylalkanes. 2,10,12-Trimethylalkanes and a 2,10,12,24-tetramethylalkane with one methylene between adjacent methyl branch points also were identified. The adjacent methyl branch points of the 2,4- and 2,10,12- and 2,10,12,24-methyl-branched alkanes appeared to cause additional fragmentations in the mass spectra. Dimethylalkanes with an odd number of carbons in the backbone of the molecule were identified as 2,23-dimethylnonacosane and 2,25-dimethylhentriacontane; their mass spectra also corresponded to mass spectra expected for a 2,6 branching sequence. However, a 2,6 branching sequence is not biosynthetically feasible because such a structure has a straight-chain tail with an odd number of carbon atoms beyond the last methyl branch point. The 2,23 and 2,25 branching sequences could be synthesized starting with a primer derived from the amino acid leucine which would account for both the even number of carbons between the branch points and an even number of carbons beyond the last methyl branch point.  相似文献   

2.
The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39) represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethylalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the subcomplex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hydrocarbons may help to elucidate the relationships between species and populations of this insect group.  相似文献   

3.
白蚁表皮碳氢化合物研究进展   总被引:2,自引:0,他引:2  
近年来, 固相微萃取等现代技术的使用显著促进了白蚁表皮碳氢化合物研究的开展。至今, 已有约29种白蚁的表皮碳氢化合物组分得到鉴定, 分属于木白蚁科、 鼻白蚁科、 原白蚁科和白蚁科, 其组分主要为正烷烃、 含有不同数量甲基的支链烷烃及少量烯烃。白蚁表皮碳氢化合物不仅具有一定的科、 属特异性, 大多数种类还具备特有组分, 表明其可作为种间识别的指标。表皮碳氢化合物组分在种内个体识别方面的作用, 在低等白蚁中多获得了支持性结果, 但也有研究认为在这些种类中表皮碳氢化合物不是种内个体识别(同巢个体识别)的唯一指标。发现其与品级分化的相关是近年来白蚁表皮碳氢化合物研究的重要进展。有些种类表皮碳氢化合物的年消长与生殖蚁的分化有关; 而另一些种类生殖蚁含有表皮碳氢化合物特有组分, 其含量与生殖蚁的生殖状态有关, 提示其可能在品级分化中发挥重要作用。作为研究白蚁品级分化和维持机理的新方向, 表皮碳氢化合物值得进一步研究探索。  相似文献   

4.
The venom apparatus of four hymenopterous parasitoids, including two bethylids, C. tarsalis (Ashmead) and C. waterstoni (Gahan), and two pteromalids, A. calandrae (Howard) and P. cerealellae (Ashmead), were removed and the associated Dufour glands characterized with respect to their external morphology and chemistry. Dufour glands in all four species have a characteristic translucent appearance that apparently results from their lipid content. The stalked Dufour glands of C. tarsalis and C. waterstoni are pear-shaped and have overall lengths of approximately 0.2 and 0.15 mm, respectively. The thin venom glands are bifurcate and insert through a fine duct into the transparent ovoid- to pear-shaped venom reservoir in these bethylids. In A. calandrae and P. cerealellae the Dufour glands are elongated, tubular structures of ca. 0.35 and 0.8 mm in length, respectively, that constrict to a short stalk that empties into the common oviduct. The venom glands in these pteromalids are simple elongated structures that insert into the sac-like venom reservoir through a fine duct. The chemistry of the volatile contents of the Dufour gland in these four species differs considerably. C. tarsalis Dufour glands contain the same hydrocarbon components as found on the cuticle of this species (Ann. Entomol. Soc. Am. 91:101-112 (1998)), and no other chemicals. The Dufour glands of C. waterstoni also contain only hydrocarbons, most of which are the same as the cuticular hydrocarbons (Ann. Entomol. Soc. Am. 85:317-325 (1992)), but in addition the Dufour gland contains ca. 3% of a mixture of 2,17- and 2,19-dimethyl C(23). A. calandrae Dufour gland chemistry is somewhat more complex than that of either of the two bethylids, but like the bethylids, only hydrocarbons are present. The carbon number range is from C(30) to C(39) and consists of a mixture of n-alkanes (C(30)-C(38)); 3-, 5-, 7-, 9-, 11-, 12-, 13-, 14-, 15- and 17-methyl alkanes; 3,7- and 3,11-dimethyl alkanes; 5,9- and 5,17-dimethyl alkanes; 7,11-, 9,13-, 13,17-, 14,18- and 15,19-dimethyl alkanes; 3,7,11- and 3, 9,15-trimethyl alkanes; and 3,7,11,15-tetramethyl alkanes. The cuticular hydrocarbons of this species have not been previously reported, but they are the same as the Dufour gland hydrocarbons. The Dufour glands of P. cerealellae contain both hydrocarbons and two long-chain aldehydes. Most of the hydrocarbons are identical to those found on the cuticle of this species (Ann. Entomol. Soc. Am. 94:152-158 (2001)), but in addition, 5,9-dimethyl C(27), 5,13-, 5,17- and 5,19-dimethyl C(35), 12- and 14-methyl C(36), 12,16- and 13,17-dimethyl C(36), 13-methyl C(37) and 13,17-dimethyl C(37) are present. The two aldehydes detected in glands from P. cerealellae are n-tetracosanal (C(23)CHO) and n-hexacosanal (C(25)CHO).  相似文献   

5.
Gas chromatography of the cuticular hydrocarbons of 4 species of ticks belonging to the genus Rhipicephalus (R. sanguineus, R. turanicus, R. pusillus, and R. bursa) showed a unique pattern for each taxon. The hydrocarbon fractions were composed of a mixture of straight-chain, terminally methylated, and internally branched alkanes; however, only a small quantity of alkenes was detected. Freshly collected, dried, and alcohol-stored specimens of R. sanguineus were analyzed and their patterns found to be nearly identical. Collection of specimens from separate localities demonstrated a species-specific pattern for Spanish material.  相似文献   

6.
Social insect cuticular hydrocarbon (CHC) mixtures are among the most complex chemical cues known and are important in nest-mate, caste and species recognition. Despite our growing knowledge of the nature of these cues, we have very little insight into how social insects actually perceive and discriminate among these chemicals. In this study, we use the newly developed technique of differential olfactory conditioning to pure, custom-designed synthetic colony odours to analyse signal discrimination in Argentine ants, Linepithema humile. Our results show that tri-methyl alkanes are more easily learned than single-methyl or straight-chain alkanes. In addition, we reveal that Argentine ants can discriminate between hydrocarbons with different branching patterns and the same chain length, but not always between hydrocarbons with the same branching patterns but different chain length. Our data thus show that biochemical characteristics influence those compounds that ants can discriminate between, and which thus potentially play a role in chemical signalling and nest-mate recognition.  相似文献   

7.
The viviparous cockroach Diploptera punctata carries a wax-coated batch of embryos in a brood sac. When the embryos are expelled into saline, flakes of wax from the surface of the embryos float to the surface. In contrast, embryos of the ovoviviparous species such as Rhyparobia maderae are not nourished by the mother during embryogenesis and do not have a copious waxy coating. As a first step in determining the function of this copious wax layer on the batch of embryos of D. punctata, its composition was compared to that of the waxy material on the outer cuticular surface of the mother (female cuticle) by thin-layer chromatography (TLC) and gas chromatography-mass spectrometry. The major lipid class on the embryos was hydrocarbons with lesser amounts of wax esters and long-chain alcohols. Hydrocarbons from both sources had similar elution times and chemical composition, but were markedly different in the amounts of the major methyl-branched hydrocarbon components. A mixture of 3,X-dimethyl alkanes were 44% of the hydrocarbons on the embryos and were only 29% on the female cuticle. However, trimethylalkanes were only 22% of the hydrocarbons on the embryos and were 34% of the hydrocarbons on the female cuticle. The major hydrocarbons from both sources were mixtures of methyl-branched alkanes with backbones of 33 and 35 carbon atoms. Methyl-branched tritriacontanes were 59% of embryo and 35% of female cuticular hydrocarbons; methyl-branched pentatriacontanes were 19% of embryo and 42% of female hydrocarbons. The difference in proportions of the similar hydrocarbons on the outer cuticular surface of the female and those covering the embryos may suggest that the evolution of copious nutrient secretion for the embryos was accompanied by selection for a mixture of hydrocarbons that prevents water loss by the embryos and protects them against invasion by microorganisms without preventing the movement of nutrient fluid into the embryos.  相似文献   

8.
Ants held in the laboratory and field ants of the species Pogonomyrmex barbatus have quantitative differences in their cuticular hydrocarbons and a qualitative difference in their methyl-branched hydrocarbons. Laboratory-held workers showed twice the hydrocarbon content as field ants. This difference was mainly due to higher amounts of straight-chain alkanes and methyl-branched alkanes in laboratory ants, whereas the proportion of the alkenes remained the same for both groups. In addition to the absence of some hydrocarbons in the field colonies, one of the methyl-branched hydrocarbons differed in amount and branching pattern between the two groups of ants. Whereas, notable peaks of 2-methylalkanes were identified in ants kept in the laboratory, these compounds could not be identified in ants living in their natural habitat. However, a trace amount of 4-methyltriacontane was found in lieu of the 2-methyltriacontane counterpart in field ants. Possible explanations for both qualitative and quantitative differences are discussed.  相似文献   

9.
Age determination is the basis of determining the postmortem interval using necrophagous fly larvae. To explore the potential of using cuticular hydrocarbons for determining the ages of fly larvae, changes of cuticular hydrocarbons in developing larvae of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) were investigated using gas chromatography with flame-ionization detection and gas chromatography-mass spectrometry. This study showed that the larvae produced cuticular hydrocarbons typical of insects. Most of the hydrocarbons identified were alkanes with the carbon chain length of 21-31, plus six kinds of alkenes. The hydrocarbon composition of the larvae correlated with age. The statistical results showed that simple peak ratios of n-C29 divided by another eight selected peaks increased significantly with age; their relationships with age could be modelled using exponential or power functions with R(2) close to or > 0.80. These results suggest that cuticular hydrocarbon composition is a useful indicator for determining the age of larval C. rufifacies, especially for post-feeding larvae, which are difficult to differentiate by morphology.  相似文献   

10.
Cuticular lipid compositions of all life stages of the stored product moth Plodia interpunctella have been determined. Eggs and adults of P. interpunctella have cuticular lipids consisting solely of hydrocarbons. The composition of eggs and adult females is qualitatively nearly identical with ca. 86 hydrocarbons (11 n-alkanes, 39 monomethyl alkanes, 19 dimethyl alkanes, 11 trimethyl alkanes and 6 monoenes) except females lack the 2-methyl alkanes found in eggs. Adult males have a hydrocarbon composition qualitatively nearly identical to females with the exception that they lack the monoenes. Larval and pupal cuticular lipids are dominated by a mixture of ca. 20 previously described 2-acyl-1,3-cyclohexanediones, with only minute amounts of n-alkanes on the larvae and pupae. The 2-acyl-1,3-cyclohexanediones are continuously secreted onto their silk webbing and food particles by the paired mandibular glands found in all larvae. Extracts from dissected mandibular glands have a qualitatively identical composition to larval cuticular extracts. The pupal stage (which does not have mandibular glands) is enclosed in a silk cocoon also coated with 2-acyl-1,3-cyclohexanediones laid down while the wandering stage larvae spin the cocoon. The 2-acyl-1,3-cyclohexanediones have physical properties which closely mimic those of cuticular hydrocarbons, including melting point and boiling point range and hydrophobicity. This is the first report of an insect with a life stage that does not use conventional cuticular lipids for conservation of water.  相似文献   

11.
Chouvenc  Thomas  Su  Nan-Yao 《Insectes Sociaux》2017,64(3):347-355

Recognition of nestmates is an important function in many social insects, as it maintains colony integrity by preventing outsiders from entering the colony. Agonism usually results from the interaction of con-specific non-nestmate individuals in termite colonies. Previous studies hypothesized that the cuticular hydrocarbon (CHC) profile of individuals had a role in nestmate recognition. However, contradictory results from previous studies in some subterranean termites raise questions on the validity of the cuticular hydrocarbon hypothesis. In the current study, Coptotermes gestroi (Wasmann), Coptotermes formosanus Shiraki and their hybrids were reared in identical conditions from colony foundation. This approach eliminates sources of variability in their cuticular hydrocarbon profiles aside from a genetic component. The parental species displayed dissimilar profiles of predominant alkanes and methyl alkanes, but both hybrid types displayed an overlapping, intermediate profile of these CHC. The mixture of the most abundant CHCs alone did not determine kin recognition; while the two hybrid types’ CHC profiles converged, the hybrids still showed strong agonism. One of the hybrid mating types easily merged with C. formosanus, despite only partial genetic similarity and dissimilar cuticular profiles for the common alkanes and methyl alkanes. This study suggests that in Coptotermes termites, the variable abundance of the major alkanes and methyl alkanes commonly found in most Coptotermes species does not explain agonistic patterns, and that other factors such as possibly more complex but less abundant CHC are likely to be involved in colonial recognition.

  相似文献   

12.
In social insect colonies, recognition of nestmates, kinship, caste and reproductive status is crucial both for individuals and for the colony. The recognition cues used are thought to be chemical, with the hydrocarbons found on the cuticle of insects often cited as being particularly important. However, in honeybees (Apis mellifera) the role of cuticular hydrocarbons in nestmate recognition is controversial. Here we use the proboscis extension response (PER) conditioning paradigm to determine how well honeybees learn long-chain linear alkanes and (Z)-alkenes present on the cuticle of worker bees, and also how well they can discriminate between them. We found large differences both in learning and discrimination abilities with the different cuticular hydrocarbons. Thus, the tested hydrocarbons could be classified into those which the bees learnt and discriminated well (mostly alkenes) and those which they did not (alkanes and some alkenes). These well-learnt alkenes may constitute important compounds used as cues in the social recognition processes.  相似文献   

13.
Male Tetropium fuscum (F.) and T. cinnamopterum Kirby mated with live and dead (freeze-killed) conspecific females upon antennal contact, but did not respond to dead females after cuticular waxes were removed by hexane rinsing. Significantly fewer males of each species attempted to copulate with live or dead heterospecific females than with conspecifics, indicating that mate recognition was mediated by species-specific contact sex pheromones in the female's cuticular hydrocarbons. GC/MS analysis of T. fuscum elytra identified n-alkanes and mono-methyl branched alkanes of which 11-methylheptacosane and 3- and 5-methyltricosanes were dominant in females. Full male responses, including copulatory behavior, were restored with application of enantiomerically pure synthetic (S)-11-methyl-heptacosane at 40 μg/female (one female equivalent) but not with racemic or (R)-11-methyl-heptacosane. The cuticular hydrocarbons on T. cinnamopterum elytra included 11-methyl-heptacosane as well as n-alkanes, methyl-branched alkanes, mono-alkenes, and (Z, Z)-6, 9-alkadienes. (Z)-9-pentacosene, (Z)-9-heptacosene, and 11-methyl-heptacosane were female dominant, but only (Z)-9-pentacosene elicited precopulatory behaviors in conspecific males at levels similar to those behaviors elicited by unrinsed females, but elicited copulation in fewer than half of males. At female equivalent dosages (10 μg), neither (Z)-9-heptacosene nor (S)-11-methyl- heptacosane elicited responses in males that were significantly different from those responses to a rinsed female but when applied together, the proportion of males responding was significantly increased. 11-methyl-heptacosene is thus a contact pheromone component common to both species, which may explain the heterospecific mating attempts by some males.  相似文献   

14.
Novel trimethyl-branched alkanes which eluted with the monomethylalkanes were identified in the internal lipids of Helicoverpa zea but were not present in Heliothis virescens. Their structures were unique in that the first methyl branch occurred on carbon 2 and the 2nd and 3rd methyl branch points were separated by a single methylene. Novel trimethylalkanes identified from their chemical ionization and electron impact mass spectra were 2,18,20-trimethyltetratriacontane, 2,18,20-trimethylhexatriacontane, and 2,24,26-trimethyldotetracontane. Previous reports did not find these trimethylalkanes in the cuticular surface lipids of larvae, pupae or adults of either species. The internal pupal hydrocarbons of H. virescens and H. zea amounted to 123 μg and 304 μg per pupa, respectively. They consisted of n-alkanes (8 and 4%, respectively) and methyl-branched alkanes (88 and 94%, respectively). The n-alkanes ranged in chain length from approximately 21 to 35 carbons and the methyl-branched alkanes from approximately 26 to 55 carbons vs. methyl-branched alkanes from 28 to 37 carbons previously reported for hydrocarbons from the pupal cuticular surface. The major n-alkane was heptacosane (3.3 and 1.2%, respectively, in H. virescens and H. zea). The major methyl-branched alkanes in H. virescens were methylhentriacontane (15%), methyltritriacontane (12%) and dimethyltritriacontane (10%), and in H. zea were methylnonacosane (17%), dimethylnonacosane (9%) and methylhentriacontane (20%). Except for the novel trimethylalkanes, the methylalkane branch points were predominantly on odd-numbered carbons as has been reported for these and other species.  相似文献   

15.
Sexual dimorphism is presumed to reflect adaptive divergence in response to selection favouring different optimal character states in the two sexes. Here, we analyse patterns of sexual dimorphism in the cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus using gas chromatography. Ten of the 25 peaks found in our chromatographs, differed in their relative abundance between the sexes. The presence of sexual dimorphism in T. oceanicus is discussed in reference to a review of sexual dimorphism in cuticular hydrocarbons of other insects. We found that this trait has been examined in 103 species across seven different orders. Seventy-six of these species (73%) displayed sex specificity of cuticular hydrocarbons, the presence/absence of which does not appear to be directly linked to phylogeny. The occurrence of sexual dimorphism in cuticular hydrocarbons of some but not other species, and the extent of variation within genera, suggest that this divergence has been driven primarily by sexual selection.  相似文献   

16.
In the queenless ant, Diacamma ceylonense, the cuticular hydrocarbons (C25-C35) of nestmate workers vary in their proportions according to age and fertility. Newly eclosed adults ('callows') initially have the same cuticular profile, but with time this changes to that typical of foragers. In contrast, workers that begin to produce eggs develop a different cuticular profile. Several substances (n-C29 and some methyl C25 and C27) discriminate these different social categories (callows, foragers and egg-layers). In Diacamma ceylonense, inter-colony variation of the cuticular hydrocarbons was much lower than intra-colony variation. We also found qualitative differences between the sexes, with males having a clearly different profile with much more alkanes. We discuss these results in the context of physiological models of the relation between ovarian activity and the synthesis of cuticular hydrocarbons. Variations in cuticular profile are a reliable reflection of ovarian activity, and could be used by ants as a fertility signal.  相似文献   

17.
Pheromonal communication involved in courtship behavior in Diptera   总被引:1,自引:0,他引:1  
Sex pheromones are known for many dipteran species and play an important role in courtship behavior, together with visual, tactile, acoustic and other factors. Pheromones for a number of dipterans have been recently identified. This survey covers a number of species in all the families that have been studied. The review discusses diverse courtship behaviors in Diptera, with a special focus on the sex pheromones involved. In the Nematocera suborder, pheromones are volatile components, which act at a distance. They are derived from short-chain alkanes with acetoxy groups (Cecidomyidae) or terpenes (Psychodidae). In the Cyclorrhapha, pheromones may be volatile, derived from alkanes (Tephritidae) or terpenes (Agromyzidae), or non-volatile, unsaturated or methyl-branched hydrocarbons, which act by contact (the other subgenera). The behavioral roles and regulation of these pheromones are described, and their importance in species recognition is discussed.  相似文献   

18.
Waggle-dancing honeybee foragers emit four hydrocarbons that have been shown to stimulate colony foraging by reactivating experienced foragers and increasing the number of recruitment dances. These hydrocarbons, the alkanes tricosane and pentacosane, and the alkenes (Z)-9-tricosene and (Z)-9-pentacosene, are part of the array of social insects cuticular lipids which have been well studied in the context of nestmate recognition. This study seeks to determine which of the dance hydrocarbons produce the behavioral responses of forager bees by using a binary choice behavioral assay for attraction or repulsion to the volatile phase of the dance compounds. We found no significant deviation from random choice for single dance compounds and pairs of compounds, but bees were significantly attracted to a mixture of the three compounds (Z)-9-tricosene, tricosane, and pentacosane. These results suggest synergy among the waggle-dance hydrocarbons, which was unexpected based on previous research where, in the context of nestmate recognition, alkenes have been shown to play a key role in eliciting behavioral responses. Synergy among the waggle-dance hydrocarbons may provide specificity that facilitates adaptive, context-specific behavioral responses to this subset of cuticular hydrocarbons.  相似文献   

19.
Experiments were conducted to determine the effects of whitefly parasitoids on the cuticular lipid composition of the silverleaf whitefly, Bemisia argentifolii Bellows and Perring [=sweetpotato whitefly, Bemisia tabaci (Gennadius), Biotype B] nymphs. The cuticular lipids of B. argentifolii nymphs that had been attacked by parasitic wasps, either Eretmocerus mundus Mercet or Encarsia pergandiella Howard, were characterized by capillary gas chromatography and CGC-mass spectrometry and the results compared with the cuticular lipids of unparasitized nymphs. Previous studies with B. argentifolii nymphs had shown that wax esters were the major components of the cuticular lipids with lesser amounts of hydrocarbons, long-chain aldehydes, and long-chain alcohols. No appreciable changes in lipid composition were observed for the cuticular lipids of E. pergandiella-parasitized nymphs as compared to unparasitized controls. However, the cuticular lipids from nymphs parasitized by E. mundus contained measurable quantities of two additional components in their hydrocarbon fraction. Analyses and comparisons with an authentic standard indicated that the two hydrocarbons were the even-numbered chain length methyl-branched alkanes, 2-methyltriacontane and 2-methyldotriacontane. The occurrences and possible functions of 2-methylalkanes as cuticular lipid components of insects are discussed and specifically, in regard to host recognition, acceptance, and discrimination by parasitoids. Published 2000 Wiley-Liss, Inc.  相似文献   

20.
If sexual selection is to result in speciation, traits involved in mate choice within species need to be capable of producing sexual isolation between species. We investigated the association between mate choice and sexual isolation using interspecific hybrids between two sibling species, Drosophila serrata and Drosophila birchii. A perfuming experiment demonstrated that olfaction was involved in the sexual isolation between the two species. A quantitative genetic analysis using 30 populations of hybrids between the two species indicated that mating success in hybrid individuals was predominately determined by cuticular hydrocarbons; the average genetic correlation between mating success and cuticular hydrocarbon profile was 0.84, and in some instances exceeded 0.95. Multivariate analysis of the cuticular hydrocarbons of the two species revealed that there were three independent blends of cuticular hydrocarbons that separated three levels of organization: species, sex, and sex within species. The hydrocarbons used by hybrids in mate choice included those that separated the two species, demonstrating that species-specific characters may be used in mate choice within populations. The interspecific reciprocal cross had major effect on which cuticular hydrocarbons were associated with mating success, indicating that the expression of the cuticular hydrocarbons was strongly sex linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号