首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Both innate and adaptive immune responses participate in the control of murine cytomegalovirus (mCMV) infection. In some mouse strains, like BALB/c, the control of infection relies on the activities of CD8(+) T cells. mCMV-specific CD8(+) T-cell responses are unusual in that, even after mCMV has been controlled in the periphery, the numbers of circulating virus-specific CD8(+) T cells remain high compared to those observed in other viral infections. To better understand the generation and maintenance of mCMV-specific CD8(+) T-cell responses, we evaluated how antigen load and effector molecules, such as perforin (Prf) and gamma interferon (IFN-gamma), influence these responses during acute infection in vivo. Viral burden affected the magnitude, but not the early kinetics, of antigen-specific CD8(+) T-cell responses. Similarly, the magnitude of virus-specific CD8(+) T-cell expansion was affected by Prf and IFN-gamma, but contraction of antigen-specific responses occurred normally in both Prf- and IFN-gamma-deficient mice. These data indicate that control of mCMV-specific CD8(+) T-cell expansion and contraction is more complex than anticipated and, despite the role of Prf or IFN-gamma in controlling viral replication, a full program of T-cell expansion and contraction can occur in their absence.  相似文献   

2.
SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10–17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.  相似文献   

3.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

4.
《Trends in microbiology》2023,31(6):644-656
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host–pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus–host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.  相似文献   

5.
We describe the natural history, viral dynamics, and immunobiology of feline infectious peritonitis (FIP), a highly lethal coronavirus infection. A severe recurrent infection developed, typified by viral persistence and acute lymphopenia, with waves of enhanced viral replication coinciding with fever, weight loss, and depletion of CD4+ and CD8+ T cells. Our combined observations suggest a model for FIP pathogenesis in which virus-induced T-cell depletion and the antiviral T-cell response are opposing forces and in which the efficacy of early T-cell responses critically determines the outcome of the infection. Rising amounts of viral RNA in the blood, consistently seen in animals with end-stage FIP, indicate that progression to fatal disease is the direct consequence of a loss of immune control, resulting in unchecked viral replication. The pathogenic phenomena described here likely bear relevance to other severe coronavirus infections, in particular severe acute respiratory syndrome, for which multiphasic disease progression and acute T-cell lymphopenia have also been reported. Experimental FIP presents a relevant, safe, and well-defined model to study coronavirus-mediated immunosuppression and should provide an attractive and convenient system for in vivo testing of anticoronaviral drugs.  相似文献   

6.
Therapeutic vaccination has the potential to boost immune responses and enhance viral control during chronic infections. However, many therapeutic vaccination approaches have fallen short of expectations, and effective boosting of antiviral T-cell responses is not always observed. To examine these issues, we studied the impact of therapeutic vaccination, using a murine model of chronic infection with lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that therapeutic vaccination using a recombinant vaccinia virus expressing the LCMV GP33 CD8 T-cell epitope can be effective at accelerating viral control. However, mice with lower viral loads at the time of vaccination responded better to therapeutic vaccination than did those with high viral loads. Also, the proliferative potential of GP33-specific CD8 T cells from chronically infected mice was substantially lower than that of GP33-specific memory CD8 T cells from mice with immunity to LCMV, suggesting that poor T-cell expansion may be an important reason for suboptimal responses to therapeutic vaccination. Thus, our results highlight the potential positive effects of therapeutic vaccination on viral control during chronic infection but also provide evidence that a high viral load at the time of vaccination and the low proliferative potential of responding T cells are likely to limit the effectiveness of therapeutic vaccination.  相似文献   

7.
Coronavirus disease 2019 (COVID-19) is a pulmonary inflammatory disease induced by a newly recognized coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection was detected for the first time in the city of Wuhan in China and spread all over the world at the beginning of 2020. Several millions of people have been infected with SARS-CoV-2, and almost 382,867 human deaths worldwide have been reported so far. Notably, there has been no specific, clinically approved vaccine or anti-viral treatment strategy for COVID-19. Herein, we review COVID-19, the viral replication, and its effect on promoting pulmonary fibro-inflammation via immune cell-mediated cytokine storms in humans. Several clinical trials are currently ongoing for anti-viral drugs, vaccines, and neutralizing antibodies against COVID-19. Viral clearance is the result of effective innate and adaptive immune responses. The pivotal role of interleukin (IL)-15 in viral clearance involves maintaining the balance of induced inflammatory cytokines and the homeostatic responses of natural killer and CD8+ T cells. This review presents supporting evidence of the impact of IL-15 immunotherapy on COVID-19.  相似文献   

8.
Infection with HIV is characterized by very diverse disease-progression patterns across patients, associated with a wide variation in viral set-points. Progression is a multifactorial process, but an important role has been attributed to the HIV-specific T-cell response. To explore the conditions under which different set-points may be explained by differences in initial CD4 and CD8 T-cell responses and virus inoculum, we have formulated a model assuming that HIV-specific CD4 cells are both targets for infection and mediators of a monoclonal or polyclonal immune response. Clones differ in functional avidity for HIV epitopes. Importantly, in contrast to previous models, in this model we obtained coexistence of multiple clones at steady-state viral set-point, as seen in HIV infection. We found that, for certain parameter conditions, multiple steady states are possible: with few initial CD4 helper cells and high virus inoculum, no immune response is established and target-cell-limited infection follows, with associated high viral load; when CD4 clones are initially large and virus inoculum is low, infection can be controlled by several clones. The conditions for the dependence of viral set-point on initial inoculum and CD4 T-helper clone availability are investigated in terms of the effector mechanism of the clones involved.  相似文献   

9.
In adult mice the severity of disease from viral infections is determined by the balance between the efficiency of the immune response and the magnitude of viral load. Here, the impact of this dynamic is examined in neonates. Newborns are highly susceptible to infections due to poor innate responses, lower numbers of T cells and Th2-prone immune responses. Eighty-percent of 7-day old mice, immunologically equivalent to human neonates, succumbed to extremely low doses (5 PFU) of the essentially non-lethal lymphocytic choriomeningitis virus (LCMV-Armstrong) given intraperitoneally. This increased lethality was determined to be dependent upon poor early viral control, as well as, T cells and perforin as assessed in knockout mice. By day 3, these neonatal mice had 400-fold higher viral loads as compared to adults receiving a 10,000-fold (5X104 PFU) higher dose of LCMV. The high viral load in combination with the subsequent immunological defect of partial CD8 T cell clonal exhaustion in the periphery led to viral entry and replication in the brain. Within the brain, CD8 T cells were protected from exhaustion, and thus were able to mediate lethal immunopathology. To further delineate the role of early viral control, neonatal mice were infected with Pichinde virus, a less virulent arenavirus, or LCMV was given to pups of LCMV-immune mothers. In both cases, peak viral load was at least 29-fold lower, leading to functional CD8 T cell responses and 100% survival.  相似文献   

10.
The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.  相似文献   

11.
Human immunodeficiency virus (HIV)-specific T-cell responses are thought to play a key role in viral load decline during primary infection and in determining the subsequent viral load set point. The requirements for this effect are unknown, partly because comprehensive analysis of total HIV-specific CD4(+) and CD8(+) T-cell responses to all HIV-encoded epitopes has not been accomplished. To assess these responses, we used cytokine flow cytometry and overlapping peptide pools encompassing all products of the HIV-1 genome to study total HIV-specific T-cell responses in 23 highly active antiretroviral therapy na?ve HIV-infected patients. HIV-specific CD8(+) T-cell responses were detectable in all patients, ranging between 1.6 and 18.4% of total CD8(+) T cells. HIV-specific CD4(+) T-cell responses were present in 21 of 23 patients, although the responses were lower (0.2 to 2.94%). Contrary to previous reports, a positive correlation was identified between the plasma viral load and the total HIV-, Env-, and Nef-specific CD8(+) T-cell frequency. No correlation was found either between viral load and total or Gag-specific CD4(+) T-cell response or between the frequency of HIV-specific CD4(+) and CD8(+) T cells. These results suggest that overall frequencies of HIV-specific T cells are not the sole determinant of immune-mediated protection in HIV-infection.  相似文献   

12.
Cellular immune responses make an important contribution to both the control of human immunodeficiency virus (HIV) replication and disease progression. We used a pathogenic model of SIVmac251 infection of cynomolgus macaques to longitudinally evaluate cellular immune responses in association with various rates of disease progression. We found an inverse relationship between plasma viral load and the simian immunodeficiency virus (SIV)-specific T cells responses in peripheral blood and lymph nodes. SIV-specific T-cell responses in peripheral blood were transient during primary infection, with the highest responses detected around 3 months after infection. There was also a transient increase of central memory CD8+ T cells in peripheral blood during primary infection, and effector memory T-cell counts in peripheral lymph nodes were increased. This study emphasizes the importance of the early virus-specific immune responses in the outcome of HIV/SIV disease and provides details about the changes of virus-specific immune responses over time.  相似文献   

13.
Intracranial infection of Theiler's murine encephalomyelitis virus (TMEV) induces demyelination and a neurological disease in susceptible SJL/J (SJL) mice that resembles multiple sclerosis. While the virus is cleared from the central nervous system (CNS) of resistant C57BL/6 (B6) mice, it persists in SJL mice. To investigate the role of viral persistence and its accompanying immune responses in the development of demyelinating disease, transgenic mice expressing the P1 region of the TMEV genome (P1-Tg) were employed. Interestingly, P1-Tg mice with the B6 background showed severe reductions in both CD4(+) and CD8(+) T-cell responses to capsid epitopes, while P1-Tg mice with the SJL background displayed transient reductions following viral infection. Reduced antiviral immune responses in P1-Tg mice led to >100- to 1,000-fold increases in viral persistence at 120 days postinfection in the CNS of mice with both backgrounds. Despite the increased CNS TMEV levels in these P1-Tg mice, B6 P1-Tg mice developed neither neuropathological symptoms nor demyelinating lesions, and SJL P1-Tg mice developed significantly less severe TMEV-induced demyelinating disease. These results strongly suggest that viral persistence alone is not sufficient to induce disease and that the level of T-cell immunity to viral capsid epitopes is critical for the development of demyelinating disease in SJL mice.  相似文献   

14.
Human immunodeficiency virus (HIV)-specific CD8 T-cell responses targeting products encoded within the Gag open reading frame have frequently been associated with better viral control and disease outcome during the chronic phase of HIV infection. To further clarify this relationship, we have studied the dynamics of Gag-specific CD8 T-cell responses in relation to plasma viral load and time since infection in 33 chronically infected subjects over a 9-month period. High baseline viral loads were associated with a net loss of breadth (P < 0.001) and a decrease in the total magnitude of the Gag-specific T-cell response in general (P = 0.03). Most importantly, the baseline viral load predicted the subsequent change in the breadth of Gag recognition over time (P < 0.0001, r2 = 0.41). Compared to maintained responses, lost responses were low in magnitude (P < 0.0001) and subdominant in the hierarchy of Gag-specific responses. The present study indicates that chronic exposure of the human immune system to high levels of HIV viremia is a determinant of virus-specific CD8 T-cell loss.  相似文献   

15.
Viral load and CD4 T-cell counts in patients infected with the human immunodeficiency virus (HIV) are commonly used to guide clinical decisions regarding drug therapy or to assess therapeutic outcomes in clinical trials. However, random fluctuations in these markers of infection can obscure clinically significant change. We employ a Monte Carlo simulation to investigate contributing factors in the expected variability in CD4 T-cell count and viral load due solely to the stochastic nature of HIV infection. The simulation includes processes that contribute to the variability in HIV infection including CD4 and CD8 T-cell population dynamics as well as T-cell activation and proliferation. The simulation results may reconcile the wide range of variabilities in viral load observed in clinical studies, by quantifying correlations between viral load measurements taken days or weeks apart. The sensitivity of variability in T-cell count and viral load to changes in the lifetimes of CD4 and CD8 T-cells is investigated, as well as the effects of drug therapy.  相似文献   

16.
The CD8+ T-cell is a key mediator of antiviral immunity, potentially contributing to control of pathogenic lentiviral infection through both innate and adaptive mechanisms. We studied viral dynamics during antiretroviral treatment of simian immunodeficiency virus (SIV) infected rhesus macaques following CD8+ T-cell depletion to test the importance of adaptive cytotoxic effects in clearance of cells productively infected with SIV. As previously described, plasma viral load (VL) increased following CD8+ T-cell depletion and was proportional to the magnitude of CD8+ T-cell depletion in the GALT, confirming a direct relationship between CD8+ T-cell loss and viral replication. Surprisingly, first phase plasma virus decay following administration of antiretroviral drugs was not slower in CD8+ T-cell depleted animals compared with controls indicating that the short lifespan of the average productively infected cell is not a reflection of cytotoxic T-lymphocyte (CTL) killing. Our findings support a dominant role for non-cytotoxic effects of CD8+ T-cells on control of pathogenic lentiviral infection and suggest that cytotoxic effects, if present, are limited to early, pre-productive stages of the viral life cycle. These observations have important implications for future strategies to augment immune control of HIV.  相似文献   

17.
Chronic viral infections often result in ineffective CD8 T-cell responses due to functional exhaustion or physical deletion of virus-specific T cells. However, how persisting virus impacts various CD8 T-cell effector functions and influences other aspects of CD8 T-cell dynamics, such as immunodominance and tissue distribution, remains largely unknown. Using different strains of lymphocytic choriomeningitis virus (LCMV), we compared responses to the same CD8 T-cell epitopes during acute or chronic infection. Persistent infection led to a disruption of the normal immunodominance hierarchy of CD8 T-cell responses seen following acute infection and dramatically altered the tissue distribution of LCMV-specific CD8 T cells in lymphoid and nonlymphoid tissues. Most importantly, CD8 T-cell functional impairment occurred in a hierarchical fashion in chronically infected mice. Production of interleukin 2 and the ability to lyse target cells in vitro were the first functions compromised, followed by the ability to make tumor necrosis factor alpha, while gamma interferon production was most resistant to functional exhaustion. Antigen appeared to be the driving force for this loss of function, since a strong correlation existed between the viral load and the level of exhaustion. Further, epitopes presented at higher levels in vivo resulted in physical deletion, while those presented at lower levels induced functional exhaustion. A model is proposed in which antigen levels drive the hierarchical loss of different CD8 T-cell effector functions during chronic infection, leading to distinct stages of functional impairment and eventually to physical deletion of virus-specific T cells. These results have implications for the study of human chronic infections, where similar T-cell deletion and functional dysregulation has been observed.  相似文献   

18.
While a diversity of immunogens that elicit qualitatively different cellular immune responses are being assessed in clinical human immunodeficiency virus vaccine trials, the consequences of those varied responses for viral control remain poorly understood. In the present study, we evaluated the induction of virus-specific T-cell responses in rhesus monkeys using a series of diverse vaccine vectors. We assessed both the magnitude and the functional profile of the virus-specific CD8+ T cells by measuring gamma interferon, interleukin-2, and tumor necrosis factor alpha production. We found that the different vectors generated virus-specific T-cell responses of different magnitudes and with different functional profiles. Heterologous prime-boost vaccine regimens induced particularly high-frequency virus-specific T-cell responses with polyfunctional repertoires. Yet, immediately after a pathogenic simian-human immunodeficiency virus (SHIV) challenge, no significant differences were observed between these cohorts of vaccinated monkeys in the magnitudes or the functional profiles of their virus-specific CD8+ T cells. This finding suggests that the high viral load shapes the functional repertoire of the cellular immune response during primary infection. Nevertheless, in all vaccination regimens, higher frequency and more polyfunctional vaccine-elicited virus-specific CD8+ T-cell responses were associated with better viral control after SHIV challenge. These observations highlight the contributions of both the quality and the magnitude of vaccine-elicited cellular immune responses in the control of immunodeficiency virus replication.  相似文献   

19.
Severe primary respiratory syncytial virus (RSV) infections are characterized by bronchiolitis accompanied by wheezing. Controversy exists as to whether infants suffer from virus-induced lung pathology or from excessive immune responses. Furthermore, detailed knowledge about the development of primary T-cell responses to viral infections in infants is lacking. We studied the dynamics of innate neutrophil and adaptive T-cell responses in peripheral blood in relation to theviral load and parameters of disease in infants admitted to the intensive care unit with severe RSV infection. Analysis of primary T-cell responses showed substantial CD8+ T-cell activation, which peaked during convalescence. A strong neutrophil response, characterized by mobilization of bone marrow-derived neutrophil precursors, preceded the peak in T-cell activation. The kinetics of this neutrophil response followed the peak of clinical symptoms and the viral load with a 2- to 3-day delay. From the sequence of events, we conclude that CD8+ T-cell responses, initiated during primary RSV infections, are unlikely to contribute to disease when it is most severe. The mobilization of precursor neutrophils might reflect the strong neutrophil influx into the airways, which is a characteristic feature during RSV infections and might be an integral pathogenic process in the disease.Viral infections are characterized by a dynamic interplay between the pathogen and defensive innate and adaptive immune responses of the host (35, 38). Upon infection, virus-specific structural components are recognized by pattern recognition receptors of the host, which triggers a mechanism aimed at the suppression of virus replication and eventually virus elimination. Each virus has a characteristic signature of triggering innate immune receptors and methods to counteract immune responses of the host, which ultimately results in an immune response tailored to the particular properties of the infecting virus (6).Most insights into the sequence of events occurring during viral infections have been obtained from animal experiments, where the immunological control of viral infections can be studied in detail. In many murine models, the crucial role of CD8+ T cells in complete elimination of the virus during acute infections has been well established (9, 20, 27). However, both virus-induced damage and immune pathology might contribute to the disease, depending on the type of viral infection and/or the intensity of the innate and adaptive immune responses triggered (10, 20, 37, 41, 49, 60).Primary infections with respiratory syncytial virus (RSV) can cause severe bronchiolitis and pneumonia in infants (24). For RSV, the mouse is not a good model to study primary disease because the virus replicates poorly in murine cells. Hence, to obtain insight into the mechanism of disease caused by RSV, infection studies in humans or nonhuman primate models are needed. We and others have shown that RSV infection causes a strong influx of neutrophils into the airways (15, 25, 48). In addition, we have recently shown that substantial virus-specific CD8+ T-cell responses can be elicited in infants with severe RSV infections (25). However, it is still a controversial issue whether the severe manifestations of lower respiratory tract disease are caused directly by the virus or by innate and/or adaptive immune responses triggered by RSV (8, 20, 31, 57). In our previous work, we found no relation between the severity of disease and the number of virus-specific CD8+ T cells in peripheral blood (25). Moreover, a direct role of the viral load or different viral strains in disease severity has not been established convincingly (11, 59).Data on the development of primary T-cell responses in infants (<6 months old) during acute viral infections and after vaccinations are sparse. It is generally accepted that the infant immune system is immature and less effective than that of older children or adults. This has been shown by lower activation and/or Th2-polarized adaptive immune responses (1, 2, 58). For RSV-induced disease, it has been suggested that a Th2-biased immune response might be correlated with disease (39, 45, 50), but this idea has been challenged by others (4, 7, 12).Currently, there is no RSV vaccine, and the only preventive treatment available is a humanized neutralizing antibody specific for the fusion protein of RSV that is administered to high-risk groups and is effective in about 60% of children (29). Immune-suppressive or antiviral treatments during severe RSV disease have marginal to no effect (3, 23, 55). Insights into the kinetics of the viral load and disease course in relation to activation of the innate and adaptive immune response will shed light on factors that are attributed to severe RSV-induced disease and will possibly provide leads for the development of curative treatment. We therefore monitored the dynamics of these parameters in infants admitted to the pediatric intensive care unit (ICU) with severe primary RSV infections. During primary RSV infection, the peak values of the viral load and disease severity were followed by the exhaustion of the peripheral blood neutrophil pool, indicating a strong innate immune response closely associated with the peak of disease. We further showed that this natural respiratory infection elicited a strong primary CD8+ T-cell response in the very young patients (<3 months). This T-cell response was undetectable at the moment of hospitalization, when the infants were severely ill, and peaked at convalescence. Therefore, severe primary RSV disease does not seem to be caused by inadequate or exaggerated T-cell responses but is most likely initiated by viral damage followed by intense innate immune processes.  相似文献   

20.
mu-immunoglobulin chain gene targeted B-cell-deficient mice of susceptible BALB/c strain and resistant C57B1/6 strain are up to 100- to 1000-fold more susceptible to cutaneous infection by herpes simplex virus (HSV) than the respective control wild type mice. The effect of the lack of B cells on immunity to HSV infections was analyzed and B cells were found to play a dual role in affecting both innate and acquired immune responses. Natural antibodies (IgM isotype), reactive with HSV have an anti-viral effect in the innate control of primary cutaneous HSV infection. B cells can also function as antigen-presenting cells for the stimulation of HSV-specific CD4+ T-cell responses. Consequently, CD4+ T cells and interferon-gamma responses were found to be significantly impaired in HSV-infected B-cell-deficient mice compared to that seen in control mice. No significant differences were found in natural-killer-cell- or HSV-specific CD8+ T-cell activity between control and B-cell-deficient mice. Our results imply a role for B cell in mediating innate and CD4+ T-cell-specific immunity in determining susceptibility to primary HSV infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号