首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.  The cochlea of the horseshoe bat,Rhinolophus ferrumequinum, was frequency mapped by exposing for 30 min to one or two continuous pure tones of intensities between 70 and 110 dB SPL. The evaluation was made by differentiating between normal and swollen nuclei of the outer hair cells (OHC) of the organ of Corti and by measuring the diameter of the nuclei of the OHC.
2.  In control animals the radial diameter of the OHC nuclei varies systematically from a mean of 2.85 m at the base to 3.2 um at the apex (Fig. 1).
3.  All frequencies used for exposure were normalized to the resting frequency (FR), which is the frequency of the pure tone component of the orientation sound in a non-flying bat. The individual FR lay between 82.6 and 83.3 kHz.
4.  For analysing the small frequencies between 83.0 to 86.0 kHz in which relevant echoes occur, 3.15 mm length of the basilar membrane is used, about the same length as for the octaves from FR/4 to FR/2 (2.85 mm) and from FR/2 to FR (3.2 mm) (Fig. Ca, b).
5.  The discontinuity of the mechanical data at 4.5 mm of the length of the basilar membrane (part I of this paper) coincides with FR and the less pronounced discontinuity at 7.8 mm coincides with FR/2.
6.  Location and mechanism of the auditory filter are discussed.
  相似文献   

2.
3.
4.
Summary The activity of the external (motor) branch of the superior laryngeal nerve (SLN), innervating the cricothyroid muscle, was recorded in the greater horseshoe bat,Rhinolophus ferrumequinum. The bats were induced to change the frequency of the constant frequency (CF) component of their echolocation signals by presenting artificial signals for which they Doppler shift compensated. The data show that the SLN discharge rate and the frequency of the emitted CF are correlated in a linear manner.Abbreviations SLN Superior laryngeal nerve - RLN Recurrent laryngeal nerve - DCS Doppler compensation system - CF Constant frequency - FM Frequency modulation Supported by grants of the Deutsche Forschungsgemeinschaft (DFG), Az.: Schu 390/1, /2 and SFB 45We are indebted to Dipl.-Ing. H. Zöller for providing the computer programs. We want to thank H. Hahn and A. Polotzek for technical help.  相似文献   

5.
6.
7.
Summary A method to construct and calibrate earphones (physiologically) suitable for small bats and probably other small mammals is described. Particular emphasis was placed on getting a flat frequency response curve between 75kHz and 110kHz, the most important range forRhinolophus ferrumequinum. Below 60kHz the slope declined by about 30dB down to the audible frequency range. The maximal output without harmonic distortion (30dB down) was 80–90dB SPL, but up to 115dB SPL could be attained when accepting harmonics.Supported by the grants: Stiftung Volkswagenwerk, 111858; Deutsche Forschungsgemeinschaft, Schl 117/4; Schn 138/6  相似文献   

8.
9.
10.
11.
Pteronotus parnellii uses the second harmonic (61-62 kHz) of the CF component in its orientation sounds for Doppler-shift compensation. The bat's inner ear is mechanically specialized for fine analysis of sounds at about 61-62 kHz. Because of this specialization, cochlear microphonics (CM) evoked by 61-62 kHz tone bursts exhibit prominent transients, slow increase and decrease in amplitude at the onset and cessation of these stimuli. CM-responses to 60-61 kHz tone bursts show a prominent input-output non-linearity and transients. Accordingly, a summated response of primary auditory neurones (N1) appears not only at the onset of the stimuli, but also at the cessation. N1-off is sharply tuned at 60-61 kHz, while N1-on is tuned at 63-64 kHz, which is 2 kHz higher than the best frequency of the auditory system because of the envelope-distortion originating from sharp mechanical tuning. Single peripheral neurones sensitive to 61-62 kHz sounds have an unusually sharp tuning curve and show phase-locked responses to beats of up to 3 kHz. Information about the frequencies of Doppler-shifted echoes is thus coded by a set of sharply tuned neurones and also discharges phase-locked to beats. Neurones with a best frequency between 55 and 64 kHz show not only tonic on-responses but also off-responses which are apparently related to the mechanical off-transient occuring in the inner ear and not to a rebound from neural inhibition.  相似文献   

12.
Summary The directionality of sound emission by a horseshoe bat (Rhinolophus ferrumequinum) has been determined for the constant frequency component of its orientation sounds. The bat was fixed in the center of an acoustic perimeter and the SPL of the orientation sounds measured with a scanning microphone at different angles compared with the SPL measured by another microphone located in the direction perpendicular to the plane of the horseshoe-like structure of the nose-leaf. The maximum SPL was always found in this direction which also corresponds to the flight direction of a bat in horizontal flight. Above and lateral to this direction the SPL decreases steadily with -6 dB-points at 24 above and 23 lateral. Below the flight direction we found a prominent side lobe with a -6 dB-point at 64 .When the present data are combined with measurements of the behavioral directionality of hearing at the same frequency (Grinnell and Schnitzler, 1977), the directionality diagram of the entire echolocation system is very narrow and points in the flight direction. The prominent downward side lobe of emission does not conspicuously increase echolocation effectiveness in the direction of the ground, since hearing sensitivity is falling off so steeply in that direction. However, without this downward beam of emission, signals from below the bat would be that much less effective.Interference with the structure of the nose-leaf by covering the upper part with vaseline or plugging the left nostril destroyed the smoothness of the normal sound field and demonstrated that this complex organ is a highly functional structure optimized in the course of evolution.With differences in mood or attention, the emitted pulses varied by as much as 20 dB (80–100 dB). The emission directionality pattern also varied. In most cases, as orientation sounds increased in SPL, the acoustic beam became smaller.Supported by Deutsche Forschungsgemeinschaft, grant No. Schn 138/1-6, Stiftung Volkswagenwerk, grant No. 111 858, and the Alexander von Humboldt StiftungWe thank W. Hollerbach and C. Nitsche for technical assistance.  相似文献   

13.
1. Acoustically evoked responses of 284 neurons isolated from the cerebellar vermis, hemispheres and paraflocculus of Rhinolophus pearsonic chinesis were studied under free field acoustic stimulation conditions. 2. The BFs of these cerebellar auditory neurons ranged from 24 to 76 kHz but they mostly fall either between 48 and 64 kHz or between 65 and 76 kHz. However, the BF distribution varies among vermal, hemispheric and parafloccular neurons. 3. Threshold curves of cerebellar neurons are generally broad but those tuned to the frequency of the predominant CF component are extremely narrow. 4. Response latencies of cerebellar neurons ranged from 2 to 48 ms suggesting multiple auditory cerebellar pathways. The latency distribution also varies among vermal, hemispheric and parafloccular neurons. 5. Although both the vermis and hemispheres contain a disproportionate number of 65-74 kHz neurons, the response latencies of those neurons isolated from the vermis are scattered over a wide range of 2.2-28 ms while those neurons isolated from the hemispheres are generally stabilized between 5 and 12 ms. 6. Electrical stimulation of the auditory cortex evokes discharges from a recorded cerebellar auditory neuron. Cortical stimulation also facilitates the response of an acoustically evoked cerebellar neuron by increasing its number of impulses. The degree of facilitation is dependent upon the amplitude of the acoustic stimulus. 7. For a given electrical and acoustic stimulation condition, the facilitative latency and the degree of facilitation varied with the interstimulus interval. Among 23 neurons studied, most of them (19 neurons, 82.6%) had a maximal facilitative latency between 2 and 10 ms. 8. By examining the difference in the facilitative effect in each isolated cerebellar auditory neuron before and after a topical application of local anesthetic, procaine, onto the point of electrical stimulation in the auditory cortex, we found that the facilitative pathways to vermal and hemispheric neurons may be different from the pathway to parafloccular neurons. 9. Possible auditory pathways to different parts of the cerebellum are discussed in relation to the wide range of recorded response latencies. 10. The facilitative influence of the auditory cortex on the cerebellar auditory neurons is assumed to enhance the cerebellar role in acoustic motor orientation.  相似文献   

14.
15.
Summary FlyingRhinolophus ferrumequinum lower the frequency of the constant frequency part (f A ) of the emitted sounds in order to compensate for Doppler shifts caused by the flight speed. The echo frequency (f E ) is kept constant within a frequency band of about 200 Hz, the center frequency of which is about 150 Hz above the average or resting frequency (f R ) emitted by roosting bats shortly before take off. For the compensation they use a feedback control system in which the emission frequency is changed to hold the echo frequency at a criterion value. This feedback system was demonstrated by experiments with bats flying in an experimental wind tunnel and in a He-O2-micture. In the wind tunnelRhinolophus lowers the emission frequency in order to compensate for Doppler shifts which are caused by the ground speed flown by the bat. In the He-O2-mixtureRhinolophus compensates for Doppler shifts which correspond to the different sound speeds in the gas mixture.I would like to thank D. R. Griffin for his generous support and stimulating criticism. I express my appreciation to the New York Zoological Society for the use of its facilities and to R. Brown for technical assistance. The work was supported by grant number GB 7155 from the National Science Foundation to the New York Zoological Society. I also thank J. D. Pye for his suggestions.  相似文献   

16.
17.
18.
Recently, we reported the existence of AII "rod" amacrine cells in the retina of the greater horseshoe bat Rhinolophus ferrumequinum (Jeon et al., 2007). In order to enhance our understanding of bat vision, in the present study, we report on a quantitative analysis of cone and rod photoreceptors. The average cone density was 9,535 cells/mm2, giving a total number of cones of 33,538 cells/retina. The average rod density was 368,891 cells/mm2, giving a total number of rods of 1,303,517 cells. On average, the total populations of rods were 97.49%, and cones were 2.51% of all the photoreceptors. Rod: cone ratios ranged from 33.85:1 centrally to 42.26:1 peripherally, with a mean ratio of 38.96:1. The average regularity index of the cone mosaic in bat retina was 3.04. The present results confirm the greater horseshoe bat retina to be strongly rod-dominated. The rod-dominated retina, with the existence of AII cells discovered in our previous study, strongly suggests that the greater horseshoe bat retina has a functional scotopic property of vision. However, the existence of cone cells also suggests that the bat retina has a functional photopic property of vision.  相似文献   

19.
The vaginal plug of the Japanese greater horseshoe bat is composed of an outer, thick, hard and homogeneous layer originating from the stratum disjunctum of the vaginal mucosa and a thin, soft and opaque central core containing accidentally trapped dead spermatozoa. The vaginal plug appeared to be expelled just before or after ovulation in spring. Immediately after copulation in autumn, uterine spermatozoa were dead but few leucocytes were present. As time passes after copulation, however, the infiltration of leucocytes into the uterus increased gradually, and extensive leucocytic phagocytosis of dead spermatozoa occurred during hibernation.  相似文献   

20.
Following a dramatic decline last century, the British population of the endangered greater horseshoe bat Rhinolophus ferrumequinum is highly fragmented. To examine the consequences of fragmentation and limited dispersal on patterns of genetic structure and variation, we used microsatellite markers to screen bats from around 50% of the known maternity colonies in Britain, and two areas from continental Europe. Analyses revealed that Welsh and English colonies were genetically isolated. This, and lower variability in Britain than north France, may result from either genetic drift, or the species' colonization history. Gene flow among most neighbouring colonies was not generally restricted, with one exception. These findings have important implications for the ongoing conservation management of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号