首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cyclic GMP has been implicated in controlling the light-regulated conductance of rod photoreceptors of the vertebrate retina. However, there is little direct evidence correlating changes in cGMP concentration with the light-regulated permeability mechanism in living cells. A preparation of intact frog rod outer segments suspended in a Ringer's medium containing low Ca2+ has been used to demonstrate that initial changes in total cellular cGMP concentration parallel changes in the light-regulated membrane current over a wide range of light intensities. At light intensities bleaching from 160 to 5.6 X 10(6) rhodopsin molecules/rod/s, decreases in the response latency for the cGMP kinetics parallel decreases in the latent period of the electrical response. Further, changes in the rate of the cGMP decrease parallel the rate of membrane current suppression as the light intensity is varied. Up to 10(5) cGMP molecules are hydrolyzed per photolyzed rhodopsin, consistent with in vitro studies showing that each bleached rhodopsin can activate over 100 phosphodiesterase molecules. Addition of the Ca2+ ionophore, A23187, does not affect the initial kinetics of the cGMP decrease or of the electrical response, excluding a direct role for Ca2+ in the initial events of phototransduction. These results are consistent with cGMP being the intracellular messenger that links rhodopsin isomerization with changes in membrane permeability upon illumination. It is unlikely, however, that light-induced changes in total cGMP concentration are the sole regulators of membrane current. This is suggested by several observations: at bright light intensities, the subsecond light-induced cGMP decrease is essentially complete prior to complete suppression of membrane current; maximal light-induced decreases in cGMP concentration occur at all light intensities tested, whereas the extent of membrane current suppression varies over the same range of light intensities; changing the external Ca2+ concentration from 1 mM to 10 nM in the dark causes an increase in membrane current that is significantly more rapid than corresponding changes in cGMP concentration. Thus, light-induced changes in total cellular cGMP concentration correlate with some, but not all, aspects of the visual excitation process in vertebrate photoreceptors.  相似文献   

2.
Considerable disagreement has resulted from experiments designed to test whether light-induced falls in cGMP in outer segment (OS) of photoreceptors precede their light-induced electrical responses. Different studies have reported initial declines at 50 ms, at s, or not at all for physiological stimuli. Such studies have employed whole retinas, isolated rod OS, or isolated rod OS with attached inner segments and involved a variety of techniques. We developed an apparatus that illuminates intact pieces of dark-adapted frog retinas at 22 degrees C for known brief durations and then rapidly (47 ms) presses their OS surface against a copper mirror cooled by liquid helium. Freezing occurs in less than 2 ms. Cyclic GMP was then assayed in cryostat sections of the OS layer. Six illumination intensities that bleached from 90 to 9 X 10(8) rhodopsin molecules per s were delivered for durations of 0.1-2 s. Compared to dark-adapted values, progressive losses of cGMP were seen with all illumination intensities. Because a significant loss in cGMP was seen after a 100 ms exposure to our dimmest stimulus, it appears that a loss of cGMP could play a role in rod visual transduction.  相似文献   

3.
The concentration of guanosine 3',5'-cyclic monophosphate (cyclic GMP) has been examined in suspensions of freshly isolated frog rod outer segments using conditions which previously have been shown to maintain the ability of outer segments to perform a light-induced permeability change (presence of calf serum, anti-oxidant, and low calcium concentration). Illumination causes a rapid decrease in cyclic GMP levels which has a half-time approximately 125 ms. With light exposures that bleach less than 100 rhodopsin molecules in each rod outer segment, at least 10(4)-10(5) molecules of cyclic GMP are hydrolyzed for each rhodopsin molecule bleached. Half of the total cyclic GMP in each outer segment, approximately 2 X 10(7) molecules, is contained in the light-sensitive pool. If outer segments are exposed to continuous illumination, using intensities which bleach between 5.0 X 10(1) and 5.0 X 10(4) rhodopsin molecules/outer segment per second, cyclic GMP levels fall to a value characteristic for the intensity used. This suggests that a balance between synthesis and degradation of cyclic GMP is established. This constant level appears to be regulated by the rate of bleaching rhodopsin molecules (by the intensity of illumination), not the absolute number of rhodopsin molecules bleached...  相似文献   

4.
Frog rod outer segments freshly detached from dark-adapted retinas contain approximately 1-2 molecules of guanosine 3',5'-cyclic monophosphate (cyclic GMP) for every 100 molecules of visual pigment present. This cyclic GMP decays to 5'-GMP, and the conversion is accelerated upon illumination of the outer segments. Bleaching one rhodopsin molecule can lead to the hydrolysis of 1,000-2,000 molecules of cyclic GMP within 100-300 ms. The decline in cyclic GMP concentration becomes larger as illumination increases, and varies with the logarithm of light intensity at levels which bleach between 5 X 10(2) and 5 X 10(5) rhodopsin molecules per outer segment-second. Light suppression of plasma membrane permeability, assayed in vitro as light suppression of outer segment swelling in a modified Ringer's solution, occurs over this same range of light intensity. The correlation between cyclic GMP and permeability or swelling is maintained in the presence of two pharmacological perturbations: papaverine, a phosphodiesterase inhibitor, increases both cyclic GMP levels and the dark permeability of the plasma membrane; and beta,gamma-methylene ATP increases the effectiveness of light in suppressing both permeability and cyclic GMP levels.  相似文献   

5.
Frog rod outer segments swell slowly after being shaken from an excised retina into a modified Ringer's solution. The swelling has the following characteristics: (a) It is suppressed by illumination which bleaches only 500 rhodopsin molecules per outer segment per second. This is approximately the level required to saturate the in vivo receptor potential. (b) Light suppression is seen in NaCl but not in KCl solutions. (c) Dark swelling is labile and is enhanced by calf serum, low calcium concentrations, dithiothreitol, and cyclic nucleotide phosphodiesterase inhibitors. (d) Lowering the pH to 5.5 or removing magnesium reversibly reduces dark swelling to the same extent as illumination. (e) The amount of light required for maximal suppression of dark-swelling increases approximately 10-fold if the calcium concentrations is lowered by EGTA addition. (f) The effect of illumination is irreversibly abolished by antimycin and other inhibitors of mitochondrial electron transport. (g) A process analogous to dark adaptation in vivo can be observed: If 10-50% of the rhodopsin present is bleached and the outer segments are then kept dark, rapid dark swelling returns after a period of 15-45 min. This swelling is again sensitive to light. We tentatively ascribe the light suppression of swelling to the same decrease in sodium permeability which is observed on illuminating living receptor cells. The experiments suggest that outer segments retain their competence to perform both transduction and dark adaptation after their separation from the retina.  相似文献   

6.
Cyclic GMP concentration was measured in the rod outer segments (ROS) of the isolated frog retinas. Retinas were quickly frozen in 0.5 s after the short light flash producing 90%-saturated late receptor potential (2,000 rhodopsins bleached per rod). ROS were obtained by microdissection, the cGMP levels were determined by radioimmunoassay method. No detectable changes in cGMP concentration was found in this stimulus condition. Dark-adapted ROS contained 46.3 +/- 2 pmol/mg. 3-s bright illumination (ca. 10(7) rhodopsins bleached per rod per second) led to approximately 30% drop in cGMP content. It is supposed that the main part of cGMP with the ROS is in the bound state and therefore fast light-induced changes in its minor free fraction may escape the detection.  相似文献   

7.
Two minor proteins of frog rod outer segments become phosphorylated when retinas are incubated in the dark with 32Pi. The proteins, designated component I (13,000 daltons) and component II (12,000 daltons), are dephosphorylated when retinas are illuminated. The dephosphorylation is reversible; the two proteins are rephosphorylated when illumination ceases. Each outer segment contains approximately 10(6( molecules of components I and II. These remain associated with both fragmented and intact outer segments but dissociate from the outer segment membranes under hypoosmotic conditions. The extent of the light-induced dephosphorylation increases with higher intensities of illumination and is maximal with continuous illumination which bleaches 5.0 x 10(5) rhodopsin molecules/outer segment per second. Light which bleaches 5.0 x 10(3) rhodopsin molecules/outer segment per second causes approximately half-maximal dephosphorylation. This same intermediate level of illumination causes half-suppression of the light-sensitive permeability mechanism in isolated outer segments (Brodie and Bownds. 1976. J. Gen Physiol. 68:1-11) and also induces a half-maximal decrease in their cyclic GMP content (Woodruff et al. 1977. J. Gen. Physiol. 69:667-679). The phosphorylation of components I and II is enhanced by the addition of cyclic GMP or cyclic AMP to either retinas or isolated rod outer segments maintained in the dark. Several pharmacological agents which influence cyclic GMP levels in outer segments, including calcium, cause similar effects on the phosphorylation of components I and II and outer segment permeability. Although the cyclic nucleotide-stimulated phosphorylation can be observed either in retinas or isolated rod outer segments, the light-induced dephosphorylation is observed only in intact retinas.  相似文献   

8.
Cyclic GMP concentration was measured in the rod outer segments (ROS) of the isolated frog retinas. Retinas were quickly frozen in 0.5 s after the short light flash producing 90%-saturated late receptor potential (2,000 rhodopsins bleached per rod). ROS were obtained by microdissection, and cGMP levels were determined by radioimmunoassay method. No detectable changes in cGMP concentration was found in this stimulus condition. Dark-adapted ROS contained 46.3 ± 1.5 pmole cGMP per mg dry weight, flash-illuminated ones –45 ± 2 pmole/mg. 3-s bright illumination (ca. 107 rhodopsins bleached per rod per second) led to approximately 30% drop in cGMP content. It is supposed that the main part of cGMP within the ROS is in the bound state and therefore fast light-induced changes in its minor free fraction may escape the detection.  相似文献   

9.
By applying flash-spectrophotometry with the calcium-indicating dye arsenazo III rapid light-triggered calcium release in various cattle rod outer segment preparations was studied. It is shown that light-induced calcium signals can be unambiguously discriminated from underlying absorption changes due to photolysis of rhodopsin and apparent absorption changes resulting from lightscattering transients. The following results have been obtained: 1. Calcium-induced arsenazo III responses can be quantitatively and kinetically resolved within the time domain of the visual transduction process. 2. Photoexcitation of rhodopsin results in calcium release from intradiscal binding sites. 3. Calcium released does not appear in the cytoplasmic space unless the disc membrane is made permeable to calcium ions by an ionophore. 4. The shortest observed half-rise time of calcium release (300 ms) is possibly limited by the ionophore. 5. The stoichiometric ratio of calcium released/rhodopsin bleached is 0.5 at a free calcium concentration of 2 microM. The amount of calcium released is proportional to the precentage of rhodopsin bleaching (from 1--10%). 6. Upon disruption of the disc stack by lysis of intact rod outer segments the light-induced calcium release is greatly altered. The results are discussed in relation to previous reports on a light-induced calcium release from retinal discs and in terms of the proposed role of calcium as an intracellular transmitter in vertebrate photoreceptors.  相似文献   

10.
The light-activated cyclic GMP phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed in isolated outer segments suspended in a low-calcium Ringer's solution. Activation occurs over a range of light intensity that also causes a decrease in the permeability, cyclic GMP levels, and GTP levels of isolated outer segments. At intermediate intensities, PDE activity assumes constant intermediate values determined by the rate of rhodopsin bleaching. Washing causes an increase in maximal enzyme activity. Increasing light intensity from darkness to a level bleaching 5 x 10(3) rhodopsin molecules per outer segment per second shifts the apparent Michaelis constant (Km) from 100 to 900 microM. Maximum enzyme velocity increases at least 10-fold. The component that normally regulates this light- induced increase in the Km of PDE is removed by the customary sucrose flotation procedures. The presence of 10(-3) M Ca++ increases the light sensitivity of PDE, and maximal activation is caused by illumination bleaching only 5 x 10(2) rhodopsin molecules per outer segment per second. Calcium acts by increasing enzyme velocity while having little influence on Km. The effect of calcium appears to require a labile component, sensitive to aging of the outer segment preparation. The decrease in the light sensitivity of PDE that can be observed upon lowering the calcium concentration may be related to the desensitization of the permeability change mechanism that occurs during light adaptation of rod photoreceptors.  相似文献   

11.
Signal mechanisms of phototransduction in retinal rod   总被引:2,自引:0,他引:2  
  相似文献   

12.
Light detection by vertebrate rod photoreceptor outer segments results in the destruction of the visual pigment, rhodopsin, as its retinyl moiety is photoisomerized from 11-cis to all-trans. The regeneration of rhodopsin is necessary for vision and begins with the release of the all-trans retinal and its reduction to all-trans retinol. Retinol is then transported out of the rod outer segment for further processing. We used fluorescence imaging to monitor retinol fluorescence and quantify the kinetics of its formation and clearance after rhodopsin bleaching in the outer segments of living isolated frog (Rana pipiens) rod photoreceptors. We independently measured the release of all-trans retinal from bleached rhodopsin in frog rod outer segment membranes and the rate of all-trans retinol removal by the lipophilic carriers interphotoreceptor retinoid binding protein (IRBP) and serum albumin. We find that the kinetics of all-trans retinol formation in frog rod outer segments after rhodopsin bleaching are to a good first approximation determined by the kinetics of all-trans retinal release from the bleached pigment. For the physiological concentrations of carriers, the rate of retinol removal from the outer segment is determined by IRBP concentration, whereas the effect of serum albumin is negligible. The results indicate the presence of a specific interaction between IRBP and the rod outer segment, probably mediated by a receptor. The effect of different concentrations of IRBP on the rate of retinol removal shows no cooperativity and has an EC50 of 40 micromol/L.  相似文献   

13.
This study examines the regulation of cGMP by illumination and by calcium during signal transduction in vertebrate retinal photoreceptor cells. We employed an electropermeabilized rod outer segment (EP-ROS) preparation which permits perfusion of low molecular weight compounds into the cytosol while retaining many of the features of physiologically competent, intact rod outer segments (ROS). When nucleotide-depleted EP-ROS were incubated with MgGTP, time- and dose- dependent increases in intracellular cGMP levels were observed. The steady state cGMP concentration in EP-ROS (0.007 mol cGMP per mol rhodopsin) approached the cGMP concentration in intact ROS. Flash illumination of EP-ROS in a 250-nM free calcium medium resulted in a transient decrease in cGMP levels; this occurred in the absence of changes in calcium concentration. The kinetics of the cGMP response to flash illumination of EP-ROS were similar to that of intact ROS. To further examine the effects of calcium on cGMP metabolism, dark-adapted EP-ROS were incubated with MgGTP containing various concentrations of calcium. We observed a twofold increase in cGMP steady state levels as the free calcium was lowered from 1 microM to 20 nM; this increase was comparable to the behavior of intact ROS. Measurements of guanylate cyclase activity in EP-ROS showed a 3.5-fold increase in activity over this range of calcium concentrations, indicating a retention of calcium regulation of guanylate cyclase in EP-ROS preparations. Flash illumination of EP-ROS in either a 50- or 250-nM free calcium medium revealed a slowing of the recovery time course at the lower calcium concentration. This observation conflicts with any hypothesis whereby a reduction in free calcium concentration hastens the recovery of cytoplasmic cGMP levels, either by stimulating guanylate cyclase activity or by inhibiting phosphodiesterase activity. We conclude that changes in the intracellular calcium concentration during visual transduction may have more complex effects on the recovery of the photoresponse than can be accounted for solely by guanylate cyclase activation.  相似文献   

14.
cGMP phosphodiesterase extracted from rod outer segments can be activated by GTP in the presence of phospholipid vesicles containing bleached rhodopsin. I have separated the phosphodiesterase from a phosphodiesterase inhibitory protein and a GTPase also present in the crude extracts from rods. The GTPase can be activated by bleached rhodopsin. However, in the absence of the GTPase and inhibitor, the phosphodiesterase was not activated by GTP in the presence of bleached rhodopsin. Recombination with these proteins partially restored the activation by GTP and bleached rhodopsin.  相似文献   

15.
Frog rod outer segments contain approximately 0.25 mol of GTP and 0.25 mol of ATP per mol of rhodopsin 3 min after their isolation from the retina. UTP and CTP are present at 10-fold and 100-fold lower levels, respectively. Concentrations of GTP and ATP decline in parallel over the next 4 min to reach relatively stable levels of 0.1 mol per mol of rhodopsin. Illumination reduces the concentration of endogenous GTP but not ATP. This light-induced decrease in GTP can be as large as 70% and has a half-time of 7 s. GTP is reduced to steady intermediate levels during extended illumination of intermediate intensity, but partially returns to its dark-adapted level after brief illumination. The magnitude of the decrease increases as a linear function of the logarithm of continuous light intensity at levels which bleach between 5 X 10(2) and 5 X 10(6) rhodopsin molecules/outer segment per second. This exceeds the range of intensities over which illumination causes decreases in the cyclic GMP content and permeability of isolated outer segments (Woodruff and Bownds. 1979. J. Gen. Physiol. 73:629-653). Thus, over 4 log units of light intensity, a sensitivity control mechanism functions to make extended illumination less effective in stimulating a GTP decrease. GTP levels in dark-adapted outer segments are sensitive to changes in calcium concentration in the suspending medium. If the external calcium concentration is reduced to 10(-8) M, GTP concentration is lowered to the same level caused by saturating illumination, and the GTP remaining is no longer light-sensitive. Lowering calcium concentration to intermediate levels between 10(-6) and 10(-8) M reduces GTP to stable intermediate levels, and the GTP remaining can be reduced by light. Restoration of millimolar calcium drives synthesis of GTP, but not of ATP, and GTP lability towards illumination is again observed. These calcium-induced changes in GTP are diminished by the addition of the divalent cation ionophore A23187. Lowering or raising magnesium levels does not influence the GTP concentration. These data raise the possibility that light activates either a calcium transport mechanism driven by the hydrolysis of GTP, or some other calcium-sensitive GTPase activity of unknown function. Known light-dependent reactions involving cyclic nucleotide transformations and rhodopsin phosphorylation appear to account for only a small fraction of the light-induced GTP decrease.  相似文献   

16.
In the presence of 10(-9) M calcium, rod outer segments freshly detached from dark-adapted frog retinas contain between 0.01 and 0.02 moles of guanosine 3',5'-cyclic monophosphate (cyclic GMP) per mole of rhodopsin. The dark level of cyclic GMP is reduced approximately 50% by illumination that bleaches 5 x 10(5) rhodopsin molecules/outer segments. The dark levels of cyclic GMP also can be suppressed to approximately 0.007 mol/mol of rhodopsin by increasing the concentration of calcium from 10(-9) M to 2 x 10(-9) M, and they remain at this level as calcium concentration is raised to 10(-3) M. The final level to which illumination reduces cyclic GMP in unaffected by the calcium concentration between 10(-9) and 10(-3) M. The maximal light-induced decrease in cyclic GMP occurs within 1 s from the onset of illumination at all calcium concentrations. The magnitude and time-course of the light-induced decrease in cyclic GMP measured in these experiments are comparable to values obtained previously (Woodruff et al. 1977. J. Gen. Physiol. 69:677-679; Woodruff and Bownds. 1979. J. Gen. Physiol. 73:629-653). The data are consistent with a role for cyclic GMP in visual transduction irrespective of the calcium concentration.  相似文献   

17.
cGMP influences guanine nucleotide binding to frog photoreceptor G-protein   总被引:2,自引:0,他引:2  
A rapid light-induced decrease in cGMP is thought to play a role in regulating the permeability or light sensitivity of photoreceptor membranes. Photo-excited rhodopsin activates a guanine nucleotide-binding protein (G-protein) by catalyzing the exchange of bound GDP for GTP. This G-protein X GTP complex activates the phosphodiesterase resulting in a decrease in cGMP concentration. We have observed two processes in vitro which may be relevant for the regulation of G-protein activation. First, we have found that free GDP binds to G-protein with an affinity similar to that of GTP. These two nucleotides appear to compete for a common site. Since G-protein X GDP does not activate phosphodiesterase, light-induced changes in the GTP/GDP ratio known to occur on illumination may serve to reduce G-protein activation and hence reduce phosphodiesterase activation. Second, addition of cGMP in the presence of equimolar GTP and GDP causes GTP binding to G-protein to be enhanced compared to GDP binding. This effect increases as the cGMP concentration is increased from 0.05 to 2 mM. Thus, light-induced decreases in cGMP concentration may also act as a feedback control in reducing G-protein activation. One or both of these processes may be involved in the desensitization (light adaptation) of rod photoreceptors.  相似文献   

18.
Light-induced interfacial potentials in photoreceptor membranes   总被引:1,自引:0,他引:1       下载免费PDF全文
A rapid change in an interfacial electric potential of isolated bovine rod outer segment disk membranes occurs upon illumination. This potential change, which has been detected by the use of spin-labeled hydrophobic ions, apparently occurs within a low dielectric boundary region of the membrane near the external (cytoplasmic) surface and is positive with respect to the aqueous exterior of the disk. The magnitude of the potential change is pH-and temperature-dependent and appears with a first-order half-time of approximately 7 ms at 21 degrees C. A simple model in which one positive charge per bleached rhodopsin is translocated from the cytoplasmic aqueous space into the membrane low dielectric boundary region readily accounts for all experimental observations. The great similarity of the boundary potential change to the R2 phase of the early receptor potential suggests that the two have the same molecular origin.  相似文献   

19.
Frog rod outer segments isolated in suspension can maintain much of their in vivo activity. This observation provides us with a simpler system than the intact retina for correlating biochemical and physiological changes. The relevant physiological process, a decrease of sodium permeability by illumination, is assayed as light suppression of outer segment swelling in a modified Ringer's solution. We report here that this decrease is observed over approximately 4 log units of input light intensity and varies with the logarithm of intensity at light levels which bleach between 5.102 and 5.104 rhodopsin molecules/outer segment-second. In this illumination range responsiveness to light decreases as intensity increases. This sensitivity control system may be linked to light-activated rhodopsin phosphorylation, for inhibitors of this reaction increase light sensitivity. The presence of a second system, which controls the maximum amplitude of in vitro response to light, is revealed in experiments with cyclic nucleotide phosphodiesterase inhibitors. Papaverine addition raises intracellular cyclic GMP (guanosine monophosphate) levels and increases the magnitude of the dark permeability, but does not have a large influence on the amount of illumination required for suppression of this permeability. The data suggest that sensitivity and amplitude, as they are expressed in this in vitro system, are regulated by pharmacologically distinct pathways which use two different light-sensitive enzyme systems.  相似文献   

20.
The experimental data on the cGMP decrease under continuous illumination of rod outer segment have been theoretically analysed to study the bleaching and hence the cGMP dependence of the rhodopsin phosphorylation. From the agreement of the theoretical results with the experimental observations it has been found that the rate of phosphorylation depends on the rate of cGMP hydrolysis. If the rate of cGMP hydrolysis increases the rate of phosphorylation also increases. The results of the theoretical treatment predict that (i) the presence of cGMP in rod outer segment inhibits the rhodopsin phosphorylation and (ii) rhodopsin phosphorylation process is much faster than what has been reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号