首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Effective vaccines should confer long-term protection against future outbreaks of severe acute respiratory syndrome (SARS) caused by a novel zoonotic coronavirus (SARS-CoV) with unknown animal reservoirs. We conducted a cohort study examining multiple parameters of immune responses to SARS-CoV infection, aiming to identify the immune correlates of protection. We used a matrix of overlapping peptides spanning whole SARS-CoV proteome to determine T cell responses from 128 SARS convalescent samples by ex vivo IFN-gamma ELISPOT assays. Approximately 50% of convalescent SARS patients were positive for T cell responses, and 90% possessed strongly neutralizing Abs. Fifty-five novel T cell epitopes were identified, with spike protein dominating total T cell responses. CD8(+) T cell responses were more frequent and of a greater magnitude than CD4(+) T cell responses (p < 0.001). Polychromatic cytometry analysis indicated that the virus-specific T cells from the severe group tended to be a central memory phenotype (CD27(+)/CD45RO(+)) with a significantly higher frequency of polyfunctional CD4(+) T cells producing IFN-gamma, TNF-alpha, and IL-2, and CD8(+) T cells producing IFN-gamma, TNF-alpha, and CD107a (degranulation), as compared with the mild-moderate group. Strong T cell responses correlated significantly (p < 0.05) with higher neutralizing Ab. The serum cytokine profile during acute infection indicated a significant elevation of innate immune responses. Increased Th2 cytokines were observed in patients with fatal infection. Our study provides a roadmap for the immunogenicity of SARS-CoV and types of immune responses that may be responsible for the virus clearance, and should serve as a benchmark for SARS-CoV vaccine design and evaluation.  相似文献   

2.
CD8(+) T cells use a number of effector mechanisms to protect the host against infection. We have studied human CD8(+) T cells specific for CMV pp65(495-503) epitope, or for staphylococcal enterotoxin B, for the expression patterns of five cytokines and cytolytic effector molecules before and after antigenic stimulation. Ex vivo, the cytolytic molecule granzyme B was detected in a majority of circulating CMV-specific CD8(+) T cells, whereas perforin was rarely expressed. Both were highly expressed after Ag-specific activation accompanied by CD45RO up-regulation. TNF-alpha, IFN gamma, and IL-2 were sequentially acquired on recognition of Ag, but surprisingly, only around half of the CMV-specific CD8(+) T cells responded to antigenic stimuli with production of any cytokine measured. A dominant population coexpressed TNF-alpha and IFN-gamma, and cells expressing TNF-alpha only, IFN-gamma only, or all three cytokines together also occurred at lower but clearly detectable frequencies. Interestingly, perforin expression and production of IFN-gamma and TNF-alpha in CD8(+) T cells responding to staphylococcal enterotoxin B appeared to be largely segregated, and no IL-2 was detected in perforin-positive cells. Together, these data indicate that human CD8(+) T cells can be functionally segregated in vivo and have implications for the understanding of human CD8(+) T cell differentiation and specialization and regulation of effector mechanisms.  相似文献   

3.
The primary goal of this study was to determine how chronic exposure to Ag influences the functionality of Mycobacterium tuberculosis-specific T cell responses. The frequency of IFN-gamma-producing effector CD4(+) and CD8(+) T cells dynamically changed during persistent M. tuberculosis infection. CD8(+) T cells used differential effector functions during acute and chronic phases of the immune response, where CD8(+) T cells produced negligible amounts of IFN-gamma early in infection, but switched to cytokine production during the chronic stage of infection. Using limiting dilution analysis, CD8(+) T cells isolated during the initial phase of infection demonstrated lytic potential, but this waned in the chronic stage. The apparent loss of cytotoxic activity was not associated with the lack of perforin. Ag dose could potentially govern the functional program of CD8(+) T cells. Collectively, these results depict a host immune response mounted against M. tuberculosis of a significantly more dynamic nature than previously recognized.  相似文献   

4.
The development and resolution phases of influenza-specific CD8(+) T cell cytokine responses to epitopes derived from the viral nucleoprotein (D(b)NP(366)) and acid polymerase (D(b)PA(224)) were characterized in C57BL/6J mice for a range of anatomical compartments in the virus-infected lung and lymphoid tissue. Lymphocyte numbers were measured by IFN-gamma expression following stimulation with peptide, while the quality of the response was determined by the intensity of staining and the distribution of CD8(+) T cells producing TNF-alpha and IL-2. Both the levels of expression and the prevalence of TNF-alpha(+) and IL-2(+) cells reflected the likely Ag load, with clear differences being identified for populations from the alveolar space vs the lung parenchyma. Irrespective of the site or time of T cell recovery, IL-2(+) cells were consistently found to be a subset of the TNF-alpha(+) population which was, in turn, contained within the IFN-gamma(+) set. The capacity to produce IL-2 may thus be considered to reflect maximum functional differentiation. The hierarchy in cytokine expression throughout the acute phase of the primary and secondary response tended to be D(b)PA(224) > D(b)NP(366). Both elution studies with the cognate tetramers and experiments measuring CD8 beta coreceptor dependence for peptide stimulation demonstrated the same D(b)PA(224) > D(b)NP(366) profile for TCR avidity. Overall, the quality of any virus-specific CD8(+) T cell response appears variously determined by the avidity of the TCR-pMHC interaction, the duration and intensity of Ag stimulation characteristic of the particular tissue environment, and the availability of CD4(+) T help.  相似文献   

5.
IL-21, the most recently described member of the common gamma-chain cytokine family, is produced by activated CD4 T cells, whereas CD8 T cells express the IL-21 receptor. To investigate a possible role for IL-21 in the priming of naive CD8 T cells, we examined responses of highly purified naive OT-I CD8 T cells to artificial APCs displaying Ag and B7-1 on their surface. We found that IL-21 enhanced OT-I clonal expansion and supported development of cytotoxic effector function. High levels of IL-2 did not support development of effector functions, but IL-2 was required for optimal responses in the presence of IL-21. IL-12 and IFN-alpha have previously been shown to support naive CD8 T cell differentiation and acquisition of effector functions through a STAT4-dependent mechanism. Here, we show that IL-21 does not require STAT4 to stimulate development of cytolytic activity. Furthermore, IL-21 fails to induce IFN-gamma or IL-4 production and can partially block IL-12 induction of IFN-gamma production. CD8 T cells that differentiate in response to IL-21 have a distinct surface marker expression pattern and are characterized as CD44(high), PD-1(low), CD25(low), CD134(low), and CD137(low). Thus, IL-21 can provide a signal required by naive CD8 T cells to differentiate in response to Ag and costimulation, and the resulting effector cells represent a unique effector phenotype with highly effective cytolytic activity, but deficient capacity to secrete IFN-gamma.  相似文献   

6.
Enhancement of CD8+ T cell responses by ICOS/B7h costimulation.   总被引:17,自引:0,他引:17  
Although the recently identified ICOS/B7h costimulatory counterreceptors are critical regulators of CD4(+) T cell responses, their ability to regulate CD8(+) responses is unclear. Here we report using a tumor-rejection model that ectopic B7h expression can costimulate rejection by CD8(+) T cells in the absence of CD4(+) T cells. Although responses of naive T cells were significantly augmented by priming with B7h, B7h was surprisingly effective in mobilizing recall responses of adoptively transferred T cells. To explore why secondary responses of CD8(+) T cells were particularly enhanced by B7h, kinetics of ICOS up-regulation, proliferative responses, and cytokine production were compared from both naive and rechallenged 2C-transgenic T cells costimulated in vitro. Although B7h costimulated proliferative responses from both CD8(+) populations, rechallenged cells were preferentially costimulated for IL-2 and IFN-gamma production. These results indicate that ICOS/B7h counterreceptors likely function in vivo to enhance secondary responses by CD8(+) T cells.  相似文献   

7.
Rapid proliferation is one of the important features of memory CD8(+) T cells, ensuring rapid clearance of reinfection. Although several cytokines such as IL-15 and IL-7 regulate relatively slow homeostatic proliferation of memory T cells during the maintenance phase, it is unknown how memory T cells can proliferate more quickly than na?ve T cells upon antigen stimulation. To examine antigen-specific CD8(+) T cell proliferation in recall responses in vivo, we targeted a model antigen, ovalbumin(OVA), to DEC-205(+) dendritic cells (DCs) with a CD40 maturation stimulus. This led to the induction of functional memory CD8(+) T cells, which showed rapid proliferation and multiple cytokine production (IFN-gamma, IL-2, TNF-alpha) during the secondary challenge to DC-targeted antigen. Upon antigen-presentation, IL-18, an IFN-gamma-inducing factor, accumulated at the DC:T cell synapse. Surprisingly, IFN-gamma receptors were required to augment IL-18 production from DCs. Mice genetically deficient for IL-18 or IFN-gamma-receptor 1 also showed delayed expansion of memory CD8(+) T cells in vivo. These results indicate that a positive regulatory loop involving IFN-gamma and IL-18 signaling contributes to the accelerated memory CD8(+) T cell proliferation during a recall response to antigen presented by DCs.  相似文献   

8.
Cytolytic CD8(+) effector cells fall into two subpopulations based on cytokine secretion. Type 1 CD8(+) T cells (Tc1) secrete IFN-gamma, whereas type 2 CD8(+) T cells (Tc2) secrete IL-4 and IL-5. Both effector cell subpopulations display predominantly perforin-dependent cytolysis in vitro. Using an OVA-transfected B16 lung metastases model, we show that adoptively transferred OVA-specific Tc1 and Tc2 cells induce considerable suppression, but not cure, of pulmonary metastases. However, long-term tumor immunity prolonged survival times indefinitely and was evident by resistance to lethal tumor rechallenge. At early stages after therapy, protection by Tc2 and Tc1 effector cells were dependent in part on effector cell-derived IL-4, IL-5, and IFN-gamma, respectively. Whereas effector cell-derived perforin was not necessary. Over time the numbers of both donor cells diminished to low, yet still detectable, levels. Concomitantly, Tc1 and Tc2 effector cell therapies potentiated endogenous recipient-derived antitumor responses by inducing 1) local T cell-derived chemokines associated with type 1-like immune responses; 2) elevated levels of recipient-derived OVA tetramer-positive CD8 memory T cells that were CD44(high), CD122(+), and Ly6C(high) that predominantly produced IFN-gamma and TNF-alpha; and 3) heightened numbers of activated recipient-derived Th1 and Tc1 T cell subpopulations expressing CD25(+), CD69(+), and CD95(+) cell surface activation markers. Moreover, both Tc2 and Tc1 effector cell therapies were dependent in part on recipient-derived IFN-gamma and TNF-alpha for long-term survival and protection. Collectively, Tc1 and Tc2 effector cell immunotherapy mediate long-term tumor immunity by different mechanisms that subsequently potentiate endogenous recipient-derived type 1 antitumor responses.  相似文献   

9.
The delivery of CD40 signaling to APCs during T cell priming enhances many T cell-mediated immune responses. Although CD40 signaling up-regulates APC production of IL-12, the impact of this increased production on T cell priming is unclear. In this study an IL-12-independent T cell-mediated immune response, contact hypersensitivity (CHS), was used to further investigate the effect of CD40 ligation on the phenotypic development of Ag-specific CD4(+) and CD8(+) T cells. Normally, sensitization for CHS responses induces hapten-specific CD4(+) T cells producing type 2 cytokines and CD8(+) T cells producing IFN-gamma. Treatment of mice with agonist anti-CD40 mAb during sensitization with the hapten 2,4-dinitrofluorobenzene resulted in CHS responses of increased magnitude and duration. These augmented responses in anti-CD40 Ab-treated mice correlated with increased numbers of hapten-specific CD4(+) and CD8(+) T cells producing IFN-gamma in the skin draining lymph nodes. Identical results were observed using IL-12(-/-) mice, indicating that CD40 ligation promotes CHS responses and development of IFN-gamma-producing CD4(+) and CD8(+) T cells in the absence of IL-12. Engagement of CD40 on hapten-presenting Langerhans cells (hpLC) up-regulated the expression of both class I and class II MHC and promoted hpLC migration into the T cell priming site. These results indicate that hpLC stimulated by CD40 ligation use a mechanism distinct from increased IL-12 production to promote Ag-specific T cell development to IFN-gamma-producing cells.  相似文献   

10.
Constitutive presentation of tissue Ags by dendritic cells results in tolerance of autoreactive CD8+ T cells; however, the underlying molecular mechanisms are not well understood. In this study we show that programmed death (PD)-1, an inhibitory receptor of the CD28 family, is required for tolerance induction of autoreactive CD8+ T cells. An antagonistic Ab against PD-1 provoked destructive autoimmune diabetes in RIP-mOVA mice expressing chicken OVA in the pancreatic islet cells, which received naive OVA-specific CD8+ OT-I cells. This effect was mediated by the PD ligand (PD-L) PD-L1 but not by PD-L2. An increased number of effector OT-I cells recovered from the pancreatic lymph nodes of anti-PD-L1-treated mice showed down-regulation of PD-1. Furthermore, the blockade of PD-1/PD-L1 interaction during the priming phase did not significantly affect OT-I cell division but enhanced its granzyme B, IFN-gamma, and IL-2 production. Thus, during the presentation of tissue Ags to CD8+ T cells, PD-1/PD-L1 interaction crucially controls the effector differentiation of autoreactive T cells to maintain self-tolerance.  相似文献   

11.
The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4(+) Th and CD8(+) T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4(+) and CD8(+) T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-gamma, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-gamma. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8alpha(+) dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-alpha. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo.  相似文献   

12.
PD-1, an inhibitory receptor expressed on activated lymphocytes, regulates tolerance and autoimmunity. We tested the role of PD-1:PD-1 ligand (PD-L) interactions in cross-presentation and the generation and control of CD8(+) responses against self-Ag. Ag-naive PD-1(-/-) OVA-specific OT-I CD8(+) T cells exhibited exacerbated responses to cross-presented Ag in mice expressing soluble OVA under the control of the rat insulin promoter (RIP-ova(high)). Following adoptive transfer into RIP-ova(high) recipients, PD-1(-/-) OT-I T cells expanded in the pancreatic lymph node. In contrast to wild-type OT-I cells, PD-1(-/-) OT-I T cells secreted IFN-gamma and migrated into the pancreas, ultimately causing diabetes. Loss of PD-1 affected CD8(+) cells intrinsically, and did not significantly alter the responses of wild-type OT-I T cells adoptively transferred into the same RIP-ova(high) recipient mouse. PD-1:PD-L interactions also limited CD8(+) effector cells, and PD-L1 expression on parenchymal tissues protected against effector OT-I T cell attack. Finally, we found that the loss of PD-1 on effector OT-I cells lowers the threshold for Ag recognition in peripheral tissues. These findings indicate two checkpoints where PD-1 attenuates self-reactive T cell responses: presentation of self-Ag to naive self-reactive T cells by dendritic cells in the draining lymph node and reactivation of pathogenic self-reactive T cells in the target organ.  相似文献   

13.
Pleiotropic, immunomodulatory effects of type I IFN on T cell responses are emerging. We used vaccine-induced, antiviral CD8(+) T cell responses in IFN-beta (IFN-beta(-/-))- or type I IFN receptor (IFNAR(-/-))-deficient mice to study immunomodulating effects of type I IFN that are not complicated by the interference of a concomitant virus infection. Compared with normal B6 mice, IFNAR(-/-) or IFN-beta(-/-) mice have normal numbers of CD4(+) and CD8(+) T cells, and CD25(+)FoxP3(+) T regulatory (T(R)) cells in liver and spleen. Twice as many CD8(+) T cells specific for different class I-restricted epitopes develop in IFNAR(-/-) or IFN-beta(-/-) mice than in normal animals after peptide- or DNA-based vaccination. IFN-gamma and TNF-alpha production and clonal expansion of specific CD8(+) T cells from normal and knockout mice are similar. CD25(+)FoxP3(+) T(R) cells down-modulate vaccine-primed CD8(+) T cell responses in normal, IFNAR(-/-), or IFN-beta(-/-) mice to a comparable extent. Low IFN-alpha or IFN-beta doses (500-10(3) U/mouse) down-modulate CD8(+) T cells priming in vivo. IFNAR- and IFN-beta-deficient mice generate 2- to 3-fold lower numbers of IL-10-producing CD4(+) T cells after polyclonal or specific stimulation in vitro or in vivo. CD8(+) T cell responses are thus subjected to negative control by both CD25(+)FoxP3(+) T(R) cells and CD4(+)IL-10(+) T(R1) cells, but only development of the latter T(R) cells depends on type I IFN.  相似文献   

14.
15.
An understanding of T cell responses that are crucial for control of Mycobacterium tuberculosis (MTB) has major implications for the development of immune-based interventions. We studied the frequency of purified protein derivative (PPD)-specific CD3) cells expressing interleukin-2 (IL)-2, gamma interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha and IL-10 in HIV-negative pulmonary tuberculosis patients (TB, n=30) as well as in healthy individuals (controls, n=21) from Central Africa. Increased frequencies of PPD-stimulated CD3+ cells expressing IL-2, IFN-gamma, and TNF-alpha in TB were seen when compared with frequencies of controls. The presence of type 1 cytokine biased responses in TB patients was supported by a shift in the distribution pattern of cytokine expression from exclusively IL-2 or TNF-alpha expression seen in controls towards an increased frequency of IFN-gamma/IL-2 or IFN-gamma/TNF-alpha co-expression in TB. Higher levels of PPD-induced IFN-gamma in the supernatants from TB patients than from controls were found, which correlated with its intracellular expression. PPD was a weak inducer of IL-10 in T cells and insufficient in promoting cytokine production in TCRgammadelta+CD3+ cells. Non-specific stimulation with PMA and ionomycin revealed increased frequencies of CD4+ cells expressing IFN-gamma in controls, while expression of IL-2, IL-4, IL-10, IL-13, and TNF-alpha was not different. Non-specific cytokine responses of TCRgammadelta+CD3+ cells were similar in all groups. Pulmonary TB in Central Africa is associated with enhanced expression and secretion of specifically induced cytokines that are frequently implicated in host defense against MTB.  相似文献   

16.
Protective immunity to the intracellular bacterial pathogen, Listeria monocytogenes, is mediated by a vigorous T cell response. In particular, CD8(+) cytolytic T cells provide essential effector function in the clearance of bacterial infection. The cytoplasmic entry of Listeria facilitated by listeriolysin O is an essential feature not only of the bacteria's virulence, but of the ability of the bacteria to elicit protective immunity in the host. To determine how cytoplasmic entry of Listeria regulates the development of protective immunity, we examined the effects of this process on the maturation of murine dendritic cells (DC) and on their ability to prime naive CD8(+) T cell responses. Costimulatory molecules (CD40, CD80, and CD86) were induced by listerial infection only when the bacteria invaded the cytoplasm. In addition, the production of IL-12, IL-10, IL-6, and TNF-alpha was most efficiently triggered by cytosolic Listeria. Naive T cells primed by peptide-loaded DC infected with either wild-type or nonhemolytic mutant Listeria proliferated equivalently, but a much larger proportion of those primed by wild-type Listeria monocytogenes produced IFN-gamma. Costimulatory molecules induced by cytosolic entry regulated T cell proliferation and, as a result, the number of functional T cells generated. DC-produced cytokines (specifically IL-12 and IL-10) were the major factors determining the proportion of T cells producing IFN-gamma. These data highlight the requirement for listerial cytoplasmic invasion for the optimal priming of T cell cytokine production and attest to the importance of this event to the development of protective CTL responses to this pathogen.  相似文献   

17.
HIV immunity is likely CD4 T cell dependent. HIV-specific CD4 T cell proliferative responses are reported to correlate inversely with virus load and directly with specific CD8 responses. However, the phenotype and cytokine profile of specific CD4 T cells that correlate with disease is unknown. We compared the number/function of Gag p24-specific CD4 T cells in 17 HIV-infected long-term nonprogressors (LTNPs) infected for a median of 14.6 years with those of 16 slow progressors (SPs), also HIV infected for a median of 14 years but whose CD4 count had declined to <500 cells/ micro l. Compared with SPs, LTNPs had higher numbers of specific CD4s that were double positive for IFN-gamma and IL-2 as well as CD28 and IL-2. However, CD4 T cells that produced IL-2 alone (IL-2(+)IFN-gamma(-)) or IFN-gamma alone (IFN-gamma(+)IL-2(-)) did not differ between LTNPs and SPs. The decrease in p24-specific CD28(+)IL-2(+) cells with a concomitant increase of p24-specific CD28(-)IL-2(+) cells occurred before those specific for a non-HIV Ag, CMV. p24-specific CD28(-)IL-2(+) cells were evident in LTNPs and SPs, whereas the CMV-specific CD28(-)IL-2(+) response was confined to SPs. The difference between LTNPs and SPs in the Gag p24 IFN-gamma(+)IL-2(+) response was maintained when responses to total Gag (p17 plus p24) were measured. The percentage and absolute number of Gag-specific IFN-gamma(+)IL-2(+) but not of IFN-gamma(+)IL-2(-) CD4s correlated inversely with virus load. The Gag-specific IFN-gamma(+)IL-2(+) CD4 response also correlated positively with the percentage of Gag-specific IFN-gamma(+) CD8 T cells in these subjects. Accumulation of specific CD28(-)IL-2(+) helpers and loss of IFN-gamma(+)IL-2(+) CD4 T cells may compromise specific CD8 responses and, in turn, immunity to HIV.  相似文献   

18.
The robust murine response to infection with Listeria monocytogenes makes an excellent model to study the functional development of immune cells. We investigated the cellular immune response to i.p. infection using intracellular cytokine staining to identify Ag-specific lymphocytes. CD4(+) peritoneal exudate cells obtained 10 days postinfection predominantly coexpressed TNF-alpha, IFN-gamma, and IL-2 after polyclonal or Ag stimulation. A population of cells simultaneously making TNF-alpha and IFN-gamma was also detected but at a lower frequency. By following the kinetics of the response to Listeria, we found that CD4(+) lymphocytes coexpressing TNF-alpha and IFN-gamma dominated on day 6 postinfection and then declined. From days 10-27, TNF-alpha(+)IFN-gamma(+)IL-2(+) (triple-positive) was the most prevalent cytokine phenotype, and the frequency steadily declined. These characteristic cytokine expression patterns were observed in both primary and secondary responses to Listeria infection and developed even when infection was terminated with antibiotic treatment. A cytokine-assisted immunization procedure resulted in both double- and triple-positive cells, but the clear predominance of triple-positive cells required Listeria infection. Triple-positive cells were preferentially noted in the peritoneal cavity tissue site; spleen cells displayed a predominant population of double-positive T cells (TNF-alpha(+)IFN-gamma(+)). We speculate that the appearance of triple-positive cells represents a functionally significant subset important in host defense at nonlymphoid tissue sites.  相似文献   

19.
Screening with the flow cytometric IFN-gamma assay has led to the identification of a new immunogenic peptide (SSYRRPVGI) [corrected] from the influenza PB1 polymerase (PB1(703--711)) and a mimotope (ISPLMVAYM) from the PB2 polymerase (PB2(198--206)). CD8(+) T cells specific for K(b)PB1(703) make both IFN-gamma and TNF-alpha following stimulation with both peptides. The CD8(+) K(b)PB1(703)(+) population kills PB2(198)-pulsed targets, but cell lines stimulated with PB2(198) neither bind the K(b)PB1(703) tetramer nor become CTL. This CD8(+)K(b)PB1(703)(+) population is prominent in the primary response to an H3N2 virus, although it is much less obvious following secondary challenge of H1N1-primed mice. Even so, we can now account for >40% of the CD8(+) T cells in a primary influenza pneumonia and >85% of those present after H3N2 --> H1N1 challenge. Profiles of IFN-gamma and TNF-alpha staining following in vitro stimulation have been traced for the four most prominent influenza peptides through primary and secondary responses into long-term memory. The D(b)NP(366) epitope that is immunodominant after the H3N2 --> H1N1 challenge shows the lowest frequencies of CD8(+) IFN-gamma(+)TNF-alpha(+) cells for >6 wk, and the intensity of IFN-gamma staining is also low for the first 3 wk. By 11 wk, however, the IFN-gamma/TNF-alpha profiles look to be similar for all four epitopes. At least by the criterion of cytokine production, there is considerable epitope-related functional diversity in the influenza virus-specific CD8(+) T cell response. The results for the K(b)PB1(703) epitope and the PB2(198) mimotope also provide a cautionary tale for those using the cytokine staining approach to identity antigenic peptides.  相似文献   

20.
Individuals living in malaria-endemic areas show generally low T cell responses to malaria Ags. In this study, we show murine dendritic cell (DC) interaction with parasitized erythrocytes (pRBC) arrested their maturation, resulting in impaired ability to stimulate naive, but not recall T cell responses in vitro and in vivo. Moreover, within the naive T cell population, pRBC-treated DC were selectively deficient in priming CD8(+) but not CD4(+) T cells. Indeed, DC that had taken up pRBC were shown for the first time to efficiently prime CD4(+) T cell responses to a known protective merozoite Ag, MSP4/5. In contrast, impaired priming resulted in decreases in both proliferation and cytokine production by CD8(+) T cells. Deficient priming was observed to both a model and a Plasmodium berghei-specific CD8(+) T cell epitope. The mechanisms underlying the inability of parasite-treated DC to prime CD8(+) T cells were explored. pRBC treatment of DC from wild-type C57BL/6, but not from IL-10 knockout animals, suppressed DC-mediated T cell priming across a Transwell, suggesting active IL-10-dependent suppression. CD8(+) T cells were arrested at the G(0) stage of the cell cycle after two cell divisions post-Ag stimulation. The proliferation arrest was partially reversible by the addition of IL-2 or IL-7 to responder cultures. These results suggest that in malaria-endemic areas, priming of CD8(+) T cell responses may be more difficult to induce via vaccination than the priming of CD4(+) T cells. Moreover, pathogens may selectively target the CD8(+) T cell arm of protective immunity for immune evasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号