首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection.  相似文献   

2.
The role of CD4+ T cells in promoting CD8+ T cell effector activity in response to transplant Ags in vivo has not been reported. We used a hepatocellular allograft model known to initiate both CD4-dependent and CD4-independent rejection responses to investigate the contribution of CD4+ T cells to the development, function, and persistence of allospecific CD8+ T cell effectors in vivo. Complete MHC-mismatched hepatocellular allografts were transplanted into C57BL/6 (CD4-sufficient) or CD4 knockout (CD4-deficient) hosts. The development of in vivo allospecific cytotoxicity was determined by clearance of CFSE-labeled target cells. CD8+ T cell cytotoxic effector activity was enhanced in response to allogeneic hepatocellular grafts with a greater magnitude of allocytotoxicity and a prolonged persistence of CTL effector activity in CD4-sufficient hosts compared with CD4-deficient hosts. Cytolytic activity was mediated by CD8+ T cells in both recipient groups. In response to a second hepatocyte transplant, rejection kinetics were enhanced in both CD4-sufficient and CD4-deficient hepatocyte recipients. However, only CD4-sufficient hosts developed recall CTL responses with an augmented magnitude and persistence of allocytotoxicity in comparison with primary CTL responses. These studies show important functional differences between alloreactive CD8+ T cell cytolytic effectors that mature in vivo in the presence or absence of CD4+ T cells.  相似文献   

3.
Novel anticancer vaccination regimens that can elicit large numbers of Ag-specific T cells are needed. When we administered therapeutic vaccines containing the MHC class I-presented self-peptide tyrosinase-related protein (TRP)-2(180-188) and CpG-containing oligodeoxynucleotides (CpG ODN) to mice, growth of the TRP-2-expressing B16F1 melanoma was not inhibited compared with growth in mice that received control vaccinations. When we added systemic IL-2 to the TRP-2(180-188) plus CpG ODN vaccines, growth of B16F1 was inhibited in a CD8-dependent, epitope-specific manner. Vaccines containing TRP-2(180-188) without CpG ODN did not cause epitope-specific tumor growth inhibition when administered with IL-2. The antitumor efficacy of the different regimens correlated with their ability to elicit TRP-2(180-188)-specific CD8+ T cell responses. When we administered TRP-2(180-188) plus CpG ODN-containing vaccines with systemic IL-2, 18.2% of CD8+ T cells were specific for TRP-2(180-188). Identical TRP-2(180-188) plus CpG ODN vaccines given without IL-2 elicited a TRP-2(180-188)-specific CD8+ T cell response of only 1.1% of CD8+ T cells. Vaccines containing TRP-2(180-188) without CpG ODN elicited TRP-2(180-188)-specific responses of 2.8% of CD8+ T cells when administered with IL-2. There was up to a 221-fold increase in the absolute number of TRP-2(180-188)-specific CD8+ T cells when IL-2 was added to TRP-2(180-188) plus CpG ODN-containing vaccines. Peptide plus CpG ODN vaccines administered with IL-2 generated epitope-specific CD8+ T cells by a mechanism that depended on endogenous IL-6. This is the first report of synergism between CpG ODN and IL-2. This synergism caused a striking increase in vaccine-elicited CD8+ T cells and led to epitope-specific antitumor immunity.  相似文献   

4.
Identification of the signals required for optimal differentiation of naive CD8(+) T cells into effector and memory cells is critical for the design of effective vaccines. In this study we demonstrate that CD27 stimulation by soluble CD70 considerably enhances the magnitude and quality of the CD8(+) T cell response. Stimulation with soluble CD70 in the presence of Ag significantly enhanced the proliferation of CD8(+) T cells and their ability to produce IL-2 and IFN-gamma in vitro. Administration of Ag and soluble CD70 resulted in a massive (>300-fold) expansion of Ag-specific CD8(+) T cells in vivo, which was due to the enhanced proliferation and survival of activated T cells. In mice that received Ag and soluble CD70, CD8(+) T cells developed into effectors with direct ex vivo cytotoxicity. Furthermore, unlike peptide immunization, which resulted in a diminished response after rechallenge, CD27 stimulation during the primary challenge evoked a strong secondary response upon rechallenge with the antigenic peptide. Thus, in addition to increasing the frequency of primed Ag-specific T cells, CD27 signaling during the primary response instills a program of differentiation that allows CD8(+) T cells to overcome a state of unresponsiveness. Taken together these results demonstrate that soluble CD70 has potent in vivo adjuvant effects for CD8(+) T cell responses.  相似文献   

5.
Pleiotropic, immunomodulatory effects of type I IFN on T cell responses are emerging. We used vaccine-induced, antiviral CD8(+) T cell responses in IFN-beta (IFN-beta(-/-))- or type I IFN receptor (IFNAR(-/-))-deficient mice to study immunomodulating effects of type I IFN that are not complicated by the interference of a concomitant virus infection. Compared with normal B6 mice, IFNAR(-/-) or IFN-beta(-/-) mice have normal numbers of CD4(+) and CD8(+) T cells, and CD25(+)FoxP3(+) T regulatory (T(R)) cells in liver and spleen. Twice as many CD8(+) T cells specific for different class I-restricted epitopes develop in IFNAR(-/-) or IFN-beta(-/-) mice than in normal animals after peptide- or DNA-based vaccination. IFN-gamma and TNF-alpha production and clonal expansion of specific CD8(+) T cells from normal and knockout mice are similar. CD25(+)FoxP3(+) T(R) cells down-modulate vaccine-primed CD8(+) T cell responses in normal, IFNAR(-/-), or IFN-beta(-/-) mice to a comparable extent. Low IFN-alpha or IFN-beta doses (500-10(3) U/mouse) down-modulate CD8(+) T cells priming in vivo. IFNAR- and IFN-beta-deficient mice generate 2- to 3-fold lower numbers of IL-10-producing CD4(+) T cells after polyclonal or specific stimulation in vitro or in vivo. CD8(+) T cell responses are thus subjected to negative control by both CD25(+)FoxP3(+) T(R) cells and CD4(+)IL-10(+) T(R1) cells, but only development of the latter T(R) cells depends on type I IFN.  相似文献   

6.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   

7.
Against a subset of human cancers, vigorous tumor-specific CD8+ T cell responses can develop either spontaneously or upon allogeneic transplantation. However, the parameters that determine the induction of such pronounced anti-tumor immunity remain ill defined. To dissect the conditions required for the induction of high magnitude T cell responses, we have developed a murine model system in which tumor-specific T cell responses can be monitored directly ex vivo by MHC tetramer technology. In this model, tumor challenge of naive mice with Ag-bearing tumor cells results in a massive Ag-specific T cell response, followed by CD8+ T cell-dependent tumor rejection. We have subsequently used this model to assess the contribution of direct priming and cross-priming in the induction of tumor immunity in a well-defined system. Our results indicate that direct priming of T cells and Ag cross-priming are redundant mechanisms for the induction of tumor-specific T cell immunity. Moreover, T cell responses that arise as a consequence of Ag cross-presentation can occur in the absence of CD4+ T cell help and are remarkably robust.  相似文献   

8.
IL-15 regulates CD8+ T cell contraction during primary infection   总被引:3,自引:0,他引:3  
During the course of acute infection with an intracellular pathogen, Ag-specific T cells proliferate in the expansion phase, and then most of the T cells die by apoptosis in the following contraction phase, but the few that survive become memory cells and persist for a long period of time. Although IL-15 is known to play an important role in long-term maintenance of memory CD8+ T cells, the potential roles of IL-15 in CD8+ T cell contraction are not known. Using an adoptive transfer system of OT-I cells expressing OVA257-264/Kb-specific TCR into control, IL-15 knockout (KO) and IL-15 transgenic (Tg) mice followed by challenge with recombinant Listeria monocytogenes expressing OVA, we found that the survival of CD44+CD62L-CD127- effector OT-I cells during the contraction phase is critically dependent on IL-15. In correlation with the expression level of Bcl-2 in OT-I cells, the number of OT-I cells was markedly reduced in IL-15 KO mice but remained at a high level in IL-15 Tg mice during the contraction phase, compared with control mice. In vivo administration of rIL-15 during the contraction phase in IL-15 KO mice inhibited the contraction of effector OT-I cells accompanied by up-regulation of Bcl-2 expression. Furthermore, enforced expression of Bcl-2 protected the majority of effector OT-I cells from death in IL-15 KO mice after infection. These results suggest that IL-15 plays a critical role in protecting effector CD8+ T cells from apoptosis during the contraction phase following a microbial infection via inducing antiapoptotic molecules.  相似文献   

9.
Influenza A virus-specific CD8+ T cell responses in H2(b) mice are characterized by reproducible hierarchies. Compensation by the D(b)PB1-F2(62) epitope is apparent following infection with a variant H3N2 virus engineered to disrupt the prominent D(b)NP(366) and D(b)PA(224) epitopes (a double knockout or DKO). Analysis with a "triple" knockout (TKO) virus, which also compromises D(b)PB1-F2(62), did not reveal further compensation to the known residual, minor, and predicted epitopes. However, infection with this deletion mutant apparently switched protective immunity to an alternative Ab-mediated pathway. As expected, TKO virus clearance was significantly delayed in Ab-deficient MHC class II(-/-) and Ig(-/-) mice, which were much more susceptible following primary, intranasal infection with the TKO, but not DKO, virus. CD8+ T cell compensation was detected in DKO, but not TKO, infection of Ig-deficient mice, suggestive of cooperation among CD8+ T cell responses. However, after priming with a TKO H1N1 mutant, MHC II(-/-) mice survived secondary intranasal exposure to the comparable H3N2 TKO virus. Such prime/challenge experiments with the DKO and TKO viruses allowed the emergence of two previously unknown epitopes. The contrast between the absence of compensatory effect following primary exposure and the substantial clonal expansion after secondary challenge suggests that the key factor limiting the visibility of these "hidden" epitopes may be very low naive T cell precursor frequencies. Overall, these findings suggest that vaccine approaches using virus vectors to deliver an Ag may be optimized by disrupting key peptides in the normal CD8+ T cell response associated with common HLA types.  相似文献   

10.
11.
IL-10 producing T cells inhibit Ag-specific CD8+ T cell responses and may play a role in the immune dysregulation observed in HIV infection. We have previously observed the presence of HIV-specific IL-10-positive CD8+ T cells in advanced HIV disease. In this study, we examined the suppressive function of the Gag-specific IL-10-positive CD8+ T cells. Removal of these IL-10-positive CD8+ T cells resulted in increased cytolysis and IL-2, but not IFN-gamma, production by both HIV- and human CMV-specific CD8+ T cells. In addition, these IL-10-positive CD8+ T cells mediated suppression through direct cell-cell contact, and had a distinct immunophenotypic profile compared with other regulatory T cells. We describe a new suppressor CD8+ T cell population in advanced HIV infection that may contribute to the immune dysfunction observed in HIV infection.  相似文献   

12.
Screening with the flow cytometric IFN-gamma assay has led to the identification of a new immunogenic peptide (SSYRRPVGI) [corrected] from the influenza PB1 polymerase (PB1(703--711)) and a mimotope (ISPLMVAYM) from the PB2 polymerase (PB2(198--206)). CD8(+) T cells specific for K(b)PB1(703) make both IFN-gamma and TNF-alpha following stimulation with both peptides. The CD8(+) K(b)PB1(703)(+) population kills PB2(198)-pulsed targets, but cell lines stimulated with PB2(198) neither bind the K(b)PB1(703) tetramer nor become CTL. This CD8(+)K(b)PB1(703)(+) population is prominent in the primary response to an H3N2 virus, although it is much less obvious following secondary challenge of H1N1-primed mice. Even so, we can now account for >40% of the CD8(+) T cells in a primary influenza pneumonia and >85% of those present after H3N2 --> H1N1 challenge. Profiles of IFN-gamma and TNF-alpha staining following in vitro stimulation have been traced for the four most prominent influenza peptides through primary and secondary responses into long-term memory. The D(b)NP(366) epitope that is immunodominant after the H3N2 --> H1N1 challenge shows the lowest frequencies of CD8(+) IFN-gamma(+)TNF-alpha(+) cells for >6 wk, and the intensity of IFN-gamma staining is also low for the first 3 wk. By 11 wk, however, the IFN-gamma/TNF-alpha profiles look to be similar for all four epitopes. At least by the criterion of cytokine production, there is considerable epitope-related functional diversity in the influenza virus-specific CD8(+) T cell response. The results for the K(b)PB1(703) epitope and the PB2(198) mimotope also provide a cautionary tale for those using the cytokine staining approach to identity antigenic peptides.  相似文献   

13.
Stimulating naïve CD8+ T cells with specific antigens and costimulatory signals is insufficient to induce optimal clonal expansion and effector functions. In this study, we show that the activation and differentiation of CD8+ T cells require IL-2 provided by activated CD4+ T cells at the initial priming stage within 0–2.5 hours after stimulation. This critical IL-2 signal from CD4+ cells is mediated through the IL-2Rβγ of CD8+ cells, which is independent of IL-2Rα. The activation of IL-2 signaling advances the restriction point of the cell cycle, and thereby expedites the entry of antigen-stimulated CD8+ T-cell into the S phase. Besides promoting cell proliferation, IL-2 stimulation increases the amount of IFNγ and granzyme B produced by CD8+ T cells. Furthermore, IL-2 at priming enhances the ability of P14 effector cells generated by antigen activation to eradicate B16.gp33 tumors in vivo. Therefore, our studies demonstrate that a full CD8+ T-cell response is elicited by a critical temporal function of IL-2 released from CD4+ T cells, providing mechanistic insights into the regulation of CD8+ T cell activation and differentiation.  相似文献   

14.
Recent studies have shown that CD4(+) T cell help is required for the generation of memory CD8(+) T cells that can proliferate and differentiate into effector cells on Ag restimulation. The importance of help for primary CD8(+) T cell responses remains controversial. It has been suggested that help is not required for the initial proliferation and differentiation of CD8(+) T cells in vivo and that classical models of helper-dependent responses describe impaired secondary responses to Ag in vitro. We have measured primary CD8(+) T cell responses to peptide-pulsed dendritic cells in mice by cytokine ELISPOT and tetramer staining. No responses were detected in the absence of help, either when normal dendritic cells were injected into MHC II-deficient mice or when MHC II-deficient dendritic cells were injected into normal mice. Thus, the primary in vivo CD8(+) T cell response depends absolutely on help from CD4(+) T cells in our experimental system.  相似文献   

15.
During sensitization with dinitrofluorobenzene for contact hypersensitivity (CHS) responses, hapten-specific CD8(+) T cells develop into IFN-gamma-producing cells, and CD4(+) T cells develop into IL-4/IL-5-producing cells. Administration of IL-12 during sensitization skews CD4(+) T cell development to IFN-gamma-producing cells, resulting in exaggerated CHS responses. In the current report we tested the role of IL-12 on CD8(+) T cell development during sensitization and elicitation of CHS to dinitrofluorobenzene. Administration of IL-12 during hapten sensitization induced the expression of IL-12Rbeta2 on both CD4(+) and CD8(+) T cells, augmented IFN-gamma production by these T cell populations, and increased the magnitude and duration of the CHS response to hapten challenge. CHS responses were virtually identical in wild-type and IL-12 p40(-/-) mice. Since engagement of CD40 on APC may stimulate IL-12 production, we also tested the role of CD40-CD154 interactions on the development of IFN-gamma-producing CD4(+) and CD8(+) T cells following hapten sensitization. Development of IFN-gamma-producing CD4(+) T cells during hapten sensitization was absent in wild-type mice treated with anti-CD154 mAb or in CD154(-/-) mice. In contrast, the absence of CD40-CD154 signaling had little or no impact on the development of IFN-gamma-producing CD8(+) T cells. These results demonstrate that the development of hapten-specific Th1 effector CD4(+) T cells in CHS requires both CD40-CD154 interactions and IL-12, whereas the development of IFN-gamma-producing effector CD8(+) T cells can occur independently of these pathways.  相似文献   

16.
Naive Ag-specific CD8(+) T cells expand, contract, and become memory cells after infection and/or vaccination. Memory CD8(+) T cells provide faster, more effective secondary responses against repeated exposure to the same pathogen. Using an adoptive transfer system with low numbers of trackable nontransgenic memory CD8(+) T cells, we showed that secondary responses can be comprised of both primary (naive) and secondary (memory) CD8(+) T cells after bacterial (Listeria monocytogenes) and/or viral (lymphocytic choriomeningitis virus) infections. The level of memory CD8(+) T cells present at the time of infection inversely correlated with the magnitude of primary CD8(+) T cell responses against the same epitope but directly correlated with the level of protection against infection. However, similar numbers of Ag-specific CD8(+) T cells were found 8 days postinfection no matter how many memory cells were present at the time of infection. Rapid contraction of primary CD8(+) T cell responses was not influenced by the presence of memory CD8(+) T cells. However, contraction of secondary CD8(+) T cell responses was markedly prolonged compared with primary responses in the same host mice. This situation occurred in response to lymphocytic choriomeningitis virus or L. monocytogenes infection and for CD8(+) T cell responses against multiple epitopes. The delayed contraction of secondary CD8(+) T cells was also observed after immunization with peptide-coated dendritic cells. Together, the results show that the level of memory CD8(+) T cells influences protective immunity and activation of naive precursors specific for the same epitope but has little impact on the magnitude or program of the CD8(+) T cell response.  相似文献   

17.
Although the adaptive immune system has a remarkable ability to mount rapid recall responses to previously encountered pathogens, the cellular and molecular signals necessary for memory CD8(+) T cell reactivation are poorly defined. IL-15 plays a critical role in memory CD8(+) T cell survival; however, whether IL-15 is also involved in memory CD8(+) T cell reactivation is presently unclear. Using artificial Ag-presenting surfaces prepared on cell-sized microspheres, we specifically addressed the role of IL-15 transpresentation on mouse CD8(+) T cell activation in the complete absence of additional stimulatory signals. In this study we demonstrate that transpresented IL-15 is significantly more effective than soluble IL-15 in augmenting anti-CD3epsilon-induced proliferation and effector molecule expression by CD8(+) T cells. Importantly, IL-15 transpresentation and TCR ligation by anti-CD3epsilon or peptide MHC complexes exhibited synergism in stimulating CD8(+) T cell responses. In agreement with previous studies, we found that transpresented IL-15 preferentially stimulated memory phenotype CD8(+) T cells; however, in pursuing this further, we found that central memory (T(CM)) and effector memory (T(EM)) CD8(+) T cells responded differentially to transpresented IL-15. T(CM) CD8(+) T cells undergo Ag-independent proliferation in response to transpresented IL-15 alone, whereas T(EM) CD8(+) T cells are relatively unresponsive to transpresented IL-15. Furthermore, upon Ag-specific stimulation, T(CM) CD8(+) T cell responses are enhanced by IL-15 transpresentation, whereas T(EM) CD8(+) T cell responses are only slightly affected, both in vitro and in vivo. Thus, our findings distinguish the role of IL-15 transpresentation in the stimulation of distinct memory CD8(+) T cell subsets, and they also have implications for ex vivo reactivation and expansion of Ag-experienced CD8(+) T cells for immunotherapeutic approaches.  相似文献   

18.
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented.  相似文献   

19.
The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different epitopes in limited biological material. These technologies are based on the joint binding of differentially labelled MHC multimers on the T cell surface, thereby providing each antigen-specific T cell population with a unique multicolour code. This strategy of ‘combinatorial encoding’ enables detection of many (at least 25) different T cell populations per sample and should be of broad value for both T cell epitope identification and immunomonitoring.  相似文献   

20.
CTLs and NK cells use the perforin/granzyme cytotoxic pathway to kill virally infected cells and tumors. Human regulatory T cells also express functional granzymes and perforin and can induce autologous target cell death in vitro. Perforin-deficient mice die of excessive immune responses after viral challenges, implicating a potential role for this pathway in immune regulation. To further investigate the role of granzyme B in immune regulation in response to viral infections, we characterized the immune response in wild-type, granzyme B-deficient, and perforin-deficient mice infected with Sendai virus. Interestingly, granzyme B-deficient mice, and to a lesser extent perforin-deficient mice, exhibited a significant increase in the number of Ag-specific CD8(+) T cells in the lungs and draining lymph nodes of virally infected animals. This increase was not the result of failure in viral clearance because viral titers in granzyme B-deficient mice were similar to wild-type mice and significantly less than perforin-deficient mice. Regulatory T cells from WT mice expressed high levels of granzyme B in response to infection, and depletion of regulatory T cells from these mice resulted in an increase in the number of Ag-specific CD8(+) T cells, similar to that observed in granzyme B-deficient mice. Furthermore, granzyme B-deficient regulatory T cells displayed defective suppression of CD8(+) T cell proliferation in vitro. Taken together, these results suggest a role for granzyme B in the regulatory T cell compartment in immune regulation to viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号