首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the ultrastructural distribution of transferrin on the surface of L1210 ascites tumor cells, we used ferrocyanide to stain ferric iron (Prussian blue reaction) in transferrin, as well as in ferritin conjugated to antibody that was immunologically attached to the transferrin. Small deposits averaging 5 nm in diameter identified transferrin iron, whereas large cuboidal deposits averaging 50 nm in diameter stained ferritin conjugated-antibody that was bound to both transferrin and apotransferrin on the cell surface. The ability of transferrin to deliver iron to ascites tumor cells was confirmed by kinetic studies of transferrin labeled with 59Fe and 125I. These preliminary results are consistent with release of transferrin iron at the cell surface and demonstrate additional uses for ferrocyanide in ultrastructural cytochemical techniques.  相似文献   

2.
The human transferrin receptor (TfR) and its ligand, the serum iron carrier transferrin, serve as a model system for endocytic receptors. Although the complete structure of the receptor's ectodomain and a partial structure of the ligand have been published, conflicting results still exist about the magnitude of equilibrium binding constants, possibly due to different labeling techniques. In the present study, we determined the equilibrium binding constant of purified human TfR and transferrin. The results were compared to those obtained with either iodinated TfR or transferrin. Using an enzyme-linked assay for receptor-ligand interactions based on the published direct calibration ELISA technique, we determined an equilibrium constant of Kd=0.22 nM for the binding of unmodified human Tf to surface-immobilized human TfR. In a reciprocal experiment using soluble receptor and surface-bound transferrin, a similar constant of Kd=0.23 nM was measured. In contrast, covalent labeling of either TfR or transferrin with 125I reduced the affinity 3-5-fold to Kd=0.66 nM and Kd=1.01 nM, respectively. The decrease in affinity upon iodination of transferrin is contrasted by an only 1.9-fold decrease in the association rate constant, suggesting that the iodination affects rather the dissociation than the association kinetics. These results indicate that precautions should be taken when interpreting equilibrium and rate constants determined with covalently labeled components.  相似文献   

3.
4.
Binding of 125I-gastrin to porcine gastric transferrin has been demonstrated by covalent cross-linking with disuccinimidyl suberate. The concentration of gastrin required to reduce cross-linking by 50% was approx. 100 microM. The occurrence of both gastrin and gastric transferrin in porcine gastric mucosa and lumen suggests a novel synergistic role for the observed interaction in the uptake of dietary iron.  相似文献   

5.
Plasma aluminum is bound to transferrin   总被引:5,自引:0,他引:5  
G A Trapp 《Life sciences》1983,33(4):311-316
Aluminum ion is bound to at least one of the two specific iron binding sites of serum transferrin and also to serum albumin, as shown by in vivo competition studies with 67-Ga, gel filtration chromatography and ultraviolet difference spectroscopy. Binding of aluminum to transferrin requires CO2 and therefore involves a specific iron site. Samples of commercial transferrin contained large amounts of aluminum. Aluminum may cause anemia by entering pathways of iron distribution and metabolism.  相似文献   

6.
Estimates of the net equilibrium binding constants for [(H2O)(NH3)5RuII]2+, [Cl(NH3)5RuIII]2+, cis-[(H2O)2(NH3)4RuII]2+ and cis-[Cl2(NH3)4RuIII]+ with apotransferrin (Tf) and holotransferrin (Fe2Tf) suggests that RuIII, but not RuII complexes bind with a higher affinity to the iron binding sites. Several other presumably histidyl imidazole sites bind with approximately the same affinity (Keff = 10(2) to 10(3) M(-1) to both RuII and RuIII. Compared to HeLa cells, an order of magnitude higher level of nuclear DNA binding ([Ru]DNA/[P]DNA) was required to achieve the same level of toxicity in Jurkat Tag cells, which probably relates to the substantially higher levels of cis-[Cl2(NH3)4Ru]+ needed to inhibit 50% of the cell growth in the Jurkat Tag cell line. Against Jurkat Tag cells, the toxicity of the pentaammineruthenium(III) group is enhanced by approximately two orders of magnitude upon binding primarily to the Fe-sites in apotransferrin, whereas the toxicity of the tetraammineruthenium(III) moiety is only marginally increased. Binding to Fe2Tf does not increase the toxicity of either group. Significant dissociation over 24 h of the ammineruthenium(III) ions from apotransferrin requires reduction to RuII.  相似文献   

7.
8.
HFE is a class I major histocompatibility complex (MHC)-related protein that is mutated in patients with the iron overload disease hereditary hemochromatosis. HFE binds to transferrin receptor (TfR), the receptor used by cells to obtain iron in the form of diferric transferrin (Fe-Tf). Previous studies demonstrated that HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, and that membrane-bound or soluble HFE binding to cell surface TfR results in a reduction in the affinity of TfR for Fe-Tf. We studied the inhibition by soluble HFE of the interaction between soluble TfR and Fe-Tf using radioactivity-based and biosensor-based assays. The results demonstrate that HFE inhibits the TfR:Fe-Tf interaction by binding at or near the Fe-Tf binding site on TfR, and that the Fe-Tf:TfR:HFE ternary complex consists of one Fe-Tf and one HFE bound to a TfR homodimer.  相似文献   

9.
Valmu L  Kalkkinen N  Husa A  Rye PD 《Biochemistry》2005,44(49):16007-16013
Transferrin exhibits heterogeneity in glycosylation characteristic of pathological changes in alcohol abuse and congenital disorders in glycosylation. This study investigated an alternative approach in the detection of carbohydrate-deficient transferrin based on the premise that glycosylation may afford some degree of protection to proteolytic action. Differential susceptibility to proteolysis by chymotrypsin was demonstrated for normal glycosylated and nonglycosylated recombinant human transferrin, using reverse-phase (RP) HPLC, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and LC-tandem mass spectrometry (MS/MS). Peptide fragmentation profiles were consistent with a predominantly high-specificity cleavage pattern of chymotrypsin. The observed peptide fragmentation profile showed that the C-lobe of recombinant full-length nonglycosylated transferrin (rhTf-NG) appeared to be preferentially cleaved, while cleavage of the N-lobe was restricted to the N-terminal and link sequence regions. Although chymotryptic cleavage sites abound in the N-lobe, their resistance to cleavage was independent of glycosylation. Compared to previous studies of lactoferrin, our data suggest disparity in the role by which glycosylation exerts a protective effect in the siderophilin family. It was clear from the transferrin digestions analyzed by HPLC that N-linked glycosylation did confer protection from proteolysis by chymotrypsin. After fragmentation, a range of peptides representing previously cryptic epitopes were identified as potential candidates for an immunological approach to differentiate between the different transferrin glycoforms. Based on its proximity to the Asn413 glycosylation site, a 15-mer peptide, m/z 1690.472 (NKSDNCEDTPEAGYF), was identified as a suitable candidate for raising anti-peptide antibodies for subsequent immunological detection. This novel approach could form the basis for an alternative assay or reference method for the detection of carbohydrate-deficient transferrin.  相似文献   

10.
A complex of platinum and human transferrin has been formed by appropriately combining apotransferrin (metal free protein) and potassiumchloroplatinate (K2PtCl4). Atomic absorption spectroscopy indicated that both primary bind sites on the protein participated in the complex. Electron paramagnetic resonance (EPR) examination showed that the bound platinum was not paramagnetic, and thus it is highly probable that the Pt ion is in the +2 oxidation state. The results suggest a possible mechanism for physiological distribution of third-transition-series metals.  相似文献   

11.
12.
Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of 11 charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A, and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF-TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367, and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and release of iron from the hTF-TFR complex.  相似文献   

13.
The relation of the growth-stimulating capacity of transferrin to its iron-transporting function was investigated in mouse hybridoma PLV-01 cells cultivated in a chemically defined medium. The cells were precultivated in protein-free medium supplemented either with ferric citrate (cells with a high intracellular iron level) or with iron-saturated transferrin (cells with a low intracellular iron level). Iron uptake was monitored after the application of 59Fe-labeled ferric citrate or pig transferrin. Cultivation of the cells at the optimum growth-stimulating concentration (500 microM) of ferric citrate resulted in an intracellular iron level about 100-fold higher than that of cells cultivated at the optimum transferrin concentration (5 micrograms/ml). Replacement of pig transferrin with bovine transferrin resulted in similar intracellular iron levels, but the growth-stimulating effect of bovine transferrin was more than one order of magnitude lower. Cells with a high intracellular iron level grew equally well when cultivated with iron-saturated transferrin or with apotransferrin + deferoxamine (2 micrograms/ml). On the other hand, cells with a low intracellular iron level required iron-saturated transferrin for further growth and apotransferrin + deferoxamine was ineffective. The results suggest that transferrin can act as a cell growth factor only in the iron-saturated form. However, several findings of this work indicate that supplying cells with iron cannot be accepted as the full explanation of the transferrin growth-stimulating effect.  相似文献   

14.
Binding of vanadate to human serum transferrin   总被引:1,自引:0,他引:1  
Human serum transferrin specifically and reversibly binds 2 equiv of vanadate at the two metal-binding sites of the protein. The vanadium(V)-transferrin complex can be formed either by the addition of vanadate to apotransferrin or by the air oxidation of the vanadyl(IV)-transferrin complex. The formation of the vanadium complex can be blocked by loading the apotransferrin with iron(III), and bound vanadium can be displaced from the protein by the subsequent addition of either gallium(III) or iron(III). The binding constant for the second equiv of vanadate is 10(6.5) in 0.1 M hepes, pH 7.4 at 25 degrees C. The binding constant for the first equiv of vanadate is probably very similar, although no quantitative value could be determined. Although transferrin reacts with the vanadate anion, studies on the transferrin model compound ethylenebis(o-hydroxyphenylglycine) indicate that at pH 9.5, the vanadium is binding at the metal-binding site as a dioxovanadium(V) cation coordinated to two phenolic residues at each binding site. This bound cation appears to be protonated over the pH range 9.5-6.5, as shown by changes in the difference uv spectrum of the transferrin complex, to produce an oxohydroxo species. Further decreases in the pH lead to dissociation of the vanadium-transferrin complex.  相似文献   

15.
16.
Specific binding of ferric bovine transferrin to the human transferrin receptor was investigated using K562 cells propagated in serum-free medium without transferrin supplemented with 10(-5) elemental iron. Affinity chromatography of solubilized extracts of K562 cells surface-labeled with 125I was performed using bovine transferrin- and human transferrin-Sepharose 4B resins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of resin eluates reveal that bovine transferrin specifically binds a Mr = 188,000 protein which dissociates into a Mr = 94,000 protein under reducing conditions, a finding identical to what is seen with human transferrin. The Mr = 94,000 reduced protein isolated by bovine transferrin resin shows an identical one-dimensional partial proteolytic digestion map with that of the human transferrin receptor. Unlabeled bovine transferrin was shown to specifically compete 125I-labeled human transferrin from the human transferrin receptor on the surface of K562 cells at 4 degrees C in a similar manner as unlabeled human transferrin; however, approximately a 2,000-fold higher concentration of bovine ligand was required to achieve comparable competition (50% inhibition of binding). Indirect immunofluorescence cytolocalization of bovine transferrin in K562 cells grown in serum-free medium supplemented with ferric bovine transferrin reveal patterns similar to those seen for human transferrin (both focal perinuclear and diffuse cytoplasmic fluorescence). Monensin treatment results in a dramatic accumulation of bovine ligand in perinuclear aggregates, suggesting that it is recycled through the Golgi, as is human transferrin. K562 cells grown in serum-free medium supplemented with either 300 micrograms/ml of ferric human or ferric bovine transferrin were found to demonstrate superimposable growth curves.  相似文献   

17.
Is divalent iron bound to transferrin?   总被引:1,自引:0,他引:1  
  相似文献   

18.
Transferrin (Tf) is a major protein of carp (Cyprinus carpio) seminal plasma. Its relationship with milt quality is unknown. In this study, we sought to determine if Tf is polymorphic in carp seminal plasma and if this polymorphism is related to sperm motility characteristics. We screened males of purebred common carp line (Polish line R6) for Tf polymorphism in blood plasma. The majority of Tf genotypes represented only DD and DG variants. We then collected milt from preselected DD and DG genotypes and tested their sperm motility characteristics using computer-aided sperm analysis (CASA). Tf polymorphism in seminal plasma was found to be identical with that of blood. However, the relationships between Tf polymorphism and iron metabolic parameters were different for blood and semen. These data suggest different regulation of Tf in liver and testis. We found substantial differences in sperm motility characteristics between both genotypes. Spermatozoa of DG males were characterized by lower curvilinear velocity (VCL), amplitude of lateral head displacement (ALH), higher linearity (LIN) and straightness (STR) of movement as compared to DD males. No differences were found in other sperm characteristics such as sperm concentration and percentage of sperm motility. Our results suggest that sperm motility parameters are related to Tf polymorphism and therefore this polymorphism may be related to sperm competitive ability.  相似文献   

19.
Transfer of iron from native porcine uteroferrin to apotransferrin was investigated using EPR spectroscopy. Purple (oxidized) or pink (reduced) forms of uteroferrin were incubated with porcine or human apotransferrin under conditions of temperature (37 degrees C) and pH (6.8) approximating those found in the allantoic fluid of the pregnant sow. Studies were also performed in the presence of mediators such as ascorbate, citrate, and ATP in concentrations previously claimed to be effective in promoting large-scale transfer of iron (Buhi, W. C., Ducsay, C. A., Bazer, F. W., and Roberts, R. M. (1982) J. Biol. Chem. 257, 1712-1723). Our experiments indicate that even in the presence of mediators, less than 20% of the iron in uteroferrin is transferred to apotransferrin at the end of 24 h and such transfer may be accompanied by denaturation of uteroferrin. We therefore conclude that the direct transfer of iron to apotransferrin is unlikely to be a physiological role of uteroferrin.  相似文献   

20.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号