首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of Pyocyanin on a Crude-Oil-Degrading Microbial Community   总被引:3,自引:1,他引:2       下载免费PDF全文
Pseudomonas aeruginosa is an n-alkane degrader that is frequently isolated from petroleum-contaminated sites and produces factors that enhance its competitiveness and survival in many environments. In this study, one such factor, pyocyanin, has been detected in an oil-degrading culture containing P. aeruginosa and is a redox-active compound capable of inhibiting microbial growth. To examine the effects of pyocyanin further, an oil-degrading culture was grown with and without 9.5 μM pyocyanin and microbial community structure and oil degradation were monitored for 50 days. Denaturing gradient gel electrophoresis (DGGE) analysis of cultures revealed a decrease in the microbial community diversity in the pyocyanin-amended cultures compared to that of the unamended cultures. Two members of the microbial community in pure culture exhibited intermediate and high sensitivities to pyocyanin corresponding to intermediate and low levels of activity for the antioxidant enzymes catalase and superoxide dismutase, respectively. Another member of the community that remained constant in the DGGE gels over the 50-day culture incubation period exhibited no sensitivity to pyocyanin, corresponding to a high level of catalase and superoxide dismutase when examined in pure culture. Pyocyanin also affected the overall degradation of the crude oil. At 50 days, the culture without pyocyanin had decreased polycyclic aromatic hydrocarbons compared to the pyocyanin-amended culture, with a specific reduction in the degradation of dibenzothiophenes, naphthalenes, and C29 and C30 hopanes. This study demonstrated that pyocyanin influenced the diversity of the microbial community and suggests the importance of understanding how interspecies interactions influence the degradation capability of a microbial community.  相似文献   

2.
3.
The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the 16S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.  相似文献   

4.
Bacterial utilization of crude oil components, such as the n-alkanes, requires complex cell surface adaptation to allow adherence to oil. To better understand microbial cell surface adaptation to growth on crude oil, the cell surface characteristics of two Pseudomonas aeruginosa strains, U1 and U3, both isolated from the same crude oil-degrading microbial community enriched on Bonny Light crude oil (BLC), were compared. Analysis of growth rates demonstrated an increased lag time for U1 cells compared to U3 cells. Amendment with EDTA inhibited U1 and U3 growth and degradation of the n-alkane component of BLC, suggesting a link between cell surface structure and crude oil degradation. U1 cells demonstrated a smooth-to-rough colony morphology transition when grown on BLC, while U3 cells exhibited rough colony morphology at the outset. Combining high-resolution atomic force microscopy of the cell surface and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracted lipopolysaccharides (LPS), we demonstrate that isolates grown on BLC have reduced O-antigen expression compared with that of glucose-grown cells. The loss of O-antigen resulted in shorter LPS molecules, increased cell surface hydrophobicity, and increased n-alkane degradation.  相似文献   

5.
Nakagawa T  Sato S  Fukui M 《Biodegradation》2008,19(6):909-913
Anaerobic degradation of p-xylene was studied with sulfate-reducing enrichment culture. The enrichment culture was established with sediment-free sulfate-reducing consortium on crude oil. The crude oil-degrading consortium prepared with marine sediment revealed that toluene, and xylenes among the fraction of alkylbenzene in the crude oil were consumed during the incubation. The PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene for the p-xylene degrading sulfate-reducing enrichment culture showed the presence of the single dominant DGGE band pXy-K-13 coupled with p-xylene consumption and sulfide production. Sequence analysis of the DGGE band revealed a close relationship between DGGE band pXy-K-13 and the previously described marine sulfate-reducing strain oXyS1 (similarity value, 99%), which grow anaerobically with o-xylene. These results suggest that microorganism corresponding to pXy-K-13 is an important sulfate-reducing bacterium to degrade p-xylene in the enrichment culture.  相似文献   

6.
Improved strategies for oil-spill remediation will follow a better understanding of the nature, activities and regulating parameters of petroleum hydrocarbon-degrading microbial communities in temperate marine environments. The addition of crude oil to estuarine water resulted in an immediate change in bacterial community structure, increased abundance of hydrocarbon-degrading microorganisms and a rapid rate of oil degradation, suggesting the presence of a pre-adapted oil-degrading microbial community and sufficient supply of nutrients. Relatively rapid degradation was found at 4°C, the lowest temperature tested; and it was temperature rather than nutrient addition that most influenced the community structure. A detailed phylogenetic analysis of oil-degrading microcosms showed that known hydrocarbonoclastic organisms like Thalassolituus and Cycloclasticus , as well as proposed oil degraders like Roseobacter , were present at both 4°C and 20°C, demonstrating the thermo-versatility of such organisms. Clones related to Oleispira antarctica (98% 16S rRNA similarity), a psychrophilic alkane degrader, were dominant in the 4°C oil-degrading community, whereas other clones constituting a different clade and showing 94% similarity 16S rRNA with O. antarctica were found in situ. These findings demonstrate the potential for intrinsic bioremediation throughout the course of the year in temperate estuarine waters, and highlight the importance of both versatile psychrotolerant and specialized psychrophilic hydrocarbon-degrading microbes in effecting this process at low temperatures.  相似文献   

7.
Aim: To characterize the microbial community structure and bamA gene diversity involved in anaerobic degradation of toluene and benzoate under denitrifying conditions. Methods and Results: Nitrate‐reducing enrichment cultures were established on either toluene, benzoate or without additional substrate. Bacterial community structures were characterized by 16S rRNA gene–based PCR‐DGGE analysis. bamA gene diversity was analysed using DGGE and cloning methods. The results showed that bamA gene related to bamA of Thauera chlorobenzoica was dominant in toluene and benzoate cultures. However, a greater diversity of sequences was obtained in benzoate cultures. Low diversity of bamA gene was observed, and some similarities of bamA were also found between active cultures and backgrounds, suggesting that potential natural attenuation of aromatic compounds might occur. Conclusions: The combined analysis of 16S rRNA and bamA genes suggests that the species related to genera Thauera dominated toluene‐ and benzoate‐degrading cultures. The combination of multiple methods (DGGE and cloning) provides a more complete picture of bamA gene diversity. Significance and Impact of the Study: To our knowledge, this is the first report of bamA gene in denitrifying enrichments using DGGE and cloning analysis.  相似文献   

8.
Degradation of oil on beaches is, in general, limited by the supply of inorganic nutrients. In order to obtain a more systematic understanding of the effects of nutrient addition on oil spill bioremediation, beach sediment microcosms contaminated with oil were treated with different levels of inorganic nutrients. Oil biodegradation was assessed respirometrically and on the basis of changes in oil composition. Bacterial communities were compared by numerical analysis of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Nutrient amendment over a wide range of concentrations significantly improved oil degradation, confirming that N and P limited degradation over the concentration range tested. However, the extent and rate of oil degradation were similar for all microcosms, indicating that, in this experiment, it was the addition of inorganic nutrients rather than the precise amount that was most important operationally. Very different microbial communities were selected in all of the microcosms. Similarities between DGGE profiles of replicate samples from a single microcosm were high (95% ± 5%), but similarities between DGGE profiles from replicate microcosms receiving the same level of inorganic nutrients (68% ± 5%) were not significantly higher than those between microcosms subjected to different nutrient amendments (63% ± 7%). Therefore, it is apparent that the different communities selected cannot be attributed to the level of inorganic nutrients present in different microcosms. Bioremediation treatments dramatically reduced the diversity of the bacterial community. The decrease in diversity could be accounted for by a strong selection for bacteria belonging to the alkane-degrading Alcanivorax/Fundibacter group. On the basis of Shannon-Weaver indices, rapid recovery of the bacterial community diversity to preoiling levels of diversity occurred. However, although the overall diversity was similar, there were considerable qualitative differences in the community structure before and after the bioremediation treatments.  相似文献   

9.
The consumption of molecular oxygen by Pseudomonas aeruginosa can lead to the production of reduced oxygen species, including superoxide, hydrogen peroxide, and the hydroxyl radical. As a first line of defense against potentially toxic levels of endogenous superoxide, P. aeruginosa possesses an iron- and manganese-cofactored superoxide dismutase (SOD) to limit the damage evoked by this radical. In this study, we have generated mutants which possess an interrupted sodA (encoding manganese SOD) or sodB (encoding iron SOD) gene and a sodA sodB double mutant. Mutagenesis of sodA did not significantly alter the aerobic growth rate in rich medium (Luria broth) or in glucose minimal medium in comparison with that of wild-type bacteria. In addition, total SOD activity in the sodA mutant was decreased only 15% relative to that of wild-type bacteria. In contrast, sodB mutants grew much more slowly than the sodA mutant or wild-type bacteria in both media, and sodB mutants possessed only 13% of the SOD activity of wild-type bacteria. There was also a progressive decrease in catalase activity in each of the mutants, with the sodA sodB double mutant possessing only 40% of the activity of wild-type bacteria. The sodA sodB double mutant grew very slowly in rich medium and required approximately 48 h to attain saturated growth in minimal medium. There was no difference in growth of either strain under anaerobic conditions. Accordingly, the sodB but not the sodA mutant demonstrated marked sensitivity to paraquat, a superoxide-generating agent. P. aeuroginosa synthesizes a blue, superoxide-generating antibiotic similar to paraquat in redox properties which is called pyocyanin, the synthesis of which is accompanied by increased iron SOD and catalase activities (D.J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). Pyocyanin production was completely abolished in the sodB and sodA sodB mutants and was decreased approximately 57% in sodA mutants relative to that of the wild-type organism. Furthermore, the addition of sublethal concentrations of paraquat to wild-type bacteria caused a concentration-dependent decrease in pyocyanin production, suggesting that part of the pyocyanin biosynthetic cascade is inhibited by superoxide. These results suggest that iron SOD is more important than manganese SOD for aerobic growth, resistance to paraquat, and optimal pyocyanin biosynthesis in P. aeruginosa.  相似文献   

10.
【背景】金沙土遗址被认为是3 200年前商周时期大型祭祀场所,具有重要的古文化和历史意义,目前金沙土遗址在物理、化学、生物等因素的影响下已出现不同程度的劣化,物理、化学因素的影响已有报道,而生物因素尚鲜有关注。【目的】研究金沙土遗址中微生物群落结构组成,解析微生物菌群活性及代谢特征,为金沙土遗址的科学保护提供依据。【方法】根据遗址目前的保存状况,从金沙土遗址采集具有代表性的土壤样品,所采区域样品的劣化程度依次为J4J3J2J1,应用Biolog平板法与PCR-DGGE技术对各样品中的微生物群落结构组成和代谢功能多样性进行研究。【结果】Biolog结果显示,随着金沙土遗址的劣化,各土壤样品中的微生物功能多样性存在较大差异,各样品的微生物群落代谢活性依次为:J2J3J4J1,表明随着土壤的劣化,微生物的代谢活性表现出增大的趋势。主成分分析结果反映出4个样品中的微生物碳代谢方式具有显著的变化,样品J2中的细菌群落对底物碳源利用种类最多,且偏好的碳源类型与其它样品存在明显的不同。PCR-DGGE图谱显示,金沙土遗址不同土壤样品中的细菌多样性和种群组成存在明显差异,在DNA和RNA水平上,各样品的微生物组成多样性依次为:J2J4J3J1。主成分分析结果显示,除了样品J1,劣化样品的细菌群落结构和活性细菌群落结构具有较高的一致性,表明随着金沙土遗址的劣化,土壤中微生物多样性呈现出上升趋势。DGGE图谱主要条带的测序结果表明,样品中主要的细菌类群归属于放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)和异常球菌-栖热菌门(Deinococcus-Thermus),分属于7个属,在DNA和RNA水平上均能检测到红色杆菌属(Rubrobacter)和短波单胞菌属(Brevundimonas)。【结论】首次对金沙土遗址的细菌群落结构组成和功能进行分析,结果表明随着金沙土遗址劣化程度的增加,土壤微生物类群及功能多样性都随之增大,其中仅在劣化土壤样品中检出或者具有高表达活性的红色杆菌属、Tellurimicrobium、短状杆菌属细菌可能参与了土壤劣化过程,这为今后土遗址的科学保护提供了理论依据。  相似文献   

11.
Formation of dichlorofluorescein (DCF), the fluorescent oxidation product of 2',7'-dichlorodihydrofluorescein (DCFH2), in cells loaded with the latter compound is often used to detect ROS formation. We previously found that exposure of DCFH2-loaded A549 cells to the Pseudomonas aeruginosa secretory product pyocyanin results in DCF formation, consistent with ROS production. However, since pyocyanin directly accepts electrons from NAD(P)H, we hypothesized that pyocyanin might directly oxidize DCFH2 to DCF without an ROS intermediate. Incubation of DCFH2 with pyocyanin rapidly resulted in DCF formation, the rate of which was proportional to the [pyocyanin] and was not inhibited by SOD or catalase. Phenazine methosulfate, a pyocyanin analog, was more effective than pyocyanin in generating DCF. Mitoxantrone and ametantrone also produced DCF. However, menadione, paraquat, plumbagin, streptonigrin, doxorubicin, daunorubicin, and 5-iminodaunorubicin did not. Pyocyanin, phenazine methosulfate, mitoxantrone, and ametantrone also oxidized dihydrofluorescein and 5- (and 6-) -carboxy-2',7'-dichlorodihydrofluorescein, whereas dihydrorhodamine was oxidized only by pyocyanin or phenazine methosulfate. Under aerobic conditions, the interaction of DCFH2 with pyocyanin or phenazine methosulfate (but not mitoxantrone or ametantrone) produced superoxide, as detected by spin trapping. Direct oxidation of the fluorescent probes needs to be controlled for when employing these compounds to assess ROS formation by biological systems exposed to redox active compounds.  相似文献   

12.
Previous studies investigating microbial diversity in the Octopus Spring cyanobacterial mat community (Yellowstone National Park) have shown a discrepancy between bacterial populations observed by molecular retrieval and cultivation techniques. To investigate how selective enrichment culture techniques affect species composition, we used denaturing gradient gel electrophoresis (DGGE) separation of PCR-amplified 16S rRNA gene fragments to monitor the populations contained within enrichment cultures of aerobic chemoorganotrophic bacteria from the ca. 50 degrees C region of the mat community. By varying the degree of dilution of the inoculum, medium composition, and enrichment conditions and duration and by analyzing the cultures by DGGE, we detected 14 unique 16S rRNA sequence types. These corresponded to alpha-, beta-, gamma-, and delta-proteobacteria, Thermus relatives, and gram-positive bacteria with high G + C ratio and, at the highest inoculum dilutions, Chloroflexus aurantiacus relatives, which were estimated to still be approximately 300 times less abundant than cells of the mat primary producer, Synechococcus spp. Only three of these populations were previously cultivated on solidified medium after similar enrichment. Only two of these population have 16S rRNA sequences which were previously cloned directly from the mat. These results reveal a diversity of bacterial populations in enrichment culture which were not detected by either molecular retrieval or strain purification techniques.  相似文献   

13.
A polyphasic PCR-DGGE approach was used to describe the microbial population occurring in natural whey cultures (NWCs) for water-buffalo Mozzarella cheese production. Total microbial community was assessed without cultivation by analyzing DNA directly extracted from the original samples of NWC. In addition, DNA extracted from bulks of cells formed by harvesting colonies from the serial dilution agar plates of a variety of culture media was used to profile the "cultivable" community. The 16S rDNA V3 region was amplified using DNA from NWC as well as DNA from bulks as templates and the amplicons were separated by DGGE. The microbial entities occurring in NWCs were identified by partial 16S rDNA sequencing of DGGE bands: four lactic acid bacteria (LAB) closest relative of Streptococcus thermophilus, Lactococcus lactis, Lactobacillus delbrueckii and Lactobacillus crispatus were revealed by the analysis of DNA directly extracted from NWC while two other LAB, Lactobacillus fermentum and Enterococcus faecalis, were identified by analyzing DNA from the cultivable community. The developed PCR-DGGE analysis of the "cultivable" community showed good potential in evaluating microbial diversity of a dairy environment: it usefully highlighted the bias introduced by selective amplification when compared to the analysis of the total community from NWC and allowed suitability of media and growth conditions to be evaluated. Moreover, it could be used to complete the culture independent study of microbial diversity to give information on concentration ratios among species occurring in a particular environment and can be proposed for rapid identification of dominant microorganisms in alternative to traditional tools.  相似文献   

14.
Municipal sewage, urban runoff and accidental oil spills are common sources of pollutants in urban mangrove forests and may have drastic effects on the microbial communities inhabiting the sediment. However, studies on microbial communities in the sediment of urban mangroves are largely lacking. In this study, we explored the diversity of bacterial communities in the sediment of three urban mangroves located in Guanabara Bay (Rio de Janeiro, Brazil). Analysis of sediment samples by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments suggested that the overall bacterial diversity was not significantly affected by the different levels of hydrocarbon pollution at each sampling site. However, DGGE and sequence analyses provided evidences that each mangrove sediment displayed a specific structure bacterial community. Although primer sets for Pseudomonas, alphaproteobacterial and actinobacterial groups also amplified ribotypes belonging to taxa not intended to be enriched, sequence analyses of dominant DGGE bands revealed ribotypes related to Alteromonadales, Burkholderiales, Pseudomonadales, Rhodobacterales and Rhodocyclales. Members of these groups were often shown to be involved in aerobic or anaerobic degradation of hydrocarbon pollutants. Many of these sequences were only detected in the sampling sites with high levels of anthropogenic inputs of hydrocarbons. Many dominant DGGE ribotypes showed low levels of sequence identity to known sequences, indicating a large untapped bacterial diversity in mangrove ecosystems.  相似文献   

15.
Aerobically grown enrichment cultures derived from hydrocarbon-contaminated seawater and freshwater sediments were generated by growth on crude oil as sole carbon source. Both cultures displayed a high rate of degradation for a wide range of hydrocarbon compounds. The bacterial species composition of these cultures was investigated by PCR of the 16S rDNA gene using multiple primer combinations. Near full-length 16S rDNA clone libraries were generated and screened by restriction analysis prior to sequence analysis. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was carried out using two other PCR primer sets targeting either the V3 or V6-V8 regions, and sequences derived from prominent DGGE bands were compared to sequences obtained via cloning. All data sets suggested that the seawater culture was dominated by alpha-subgroup proteobacteria, whereas the freshwater culture was dominated by members of the beta- and gamma-proteobacteria. However, the V6-V8 primer pair was deficient in the recovery of Sphingomonas-like 16S rDNA due to a 3' terminal mismatch with the reverse primer. Most 16S rDNA sequences recovered from the marine enrichment were not closely related to genera containing known oil-degrading organisms, although some were detected. All methods suggested that the freshwater enrichment was dominated by genera containing known hydrocarbon-degrading species.  相似文献   

16.
The dual oxidase-thiocyanate-lactoperoxidase (Duox/SCN(-)/LPO) system generates the microbicidal oxidant hypothiocyanite in the airway surface liquid by using LPO, thiocyanate, and Duox-derived hydrogen peroxide released from the apical surface of the airway epithelium. This system is effective against several microorganisms that infect airways of cystic fibrosis and other immunocompromised patients. We show herein that exposure of airway epithelial cells to Pseudomonas aeruginosa obtained from long-term cultures inhibits Duox1-dependent hydrogen peroxide release, suggesting that some microbial factor suppresses Duox activity. These inhibitory effects are not seen with the pyocyanin-deficient P. aeruginosa strain PA14 Phz1/2. We show that purified pyocyanin, a redox-active virulence factor produced by P. aeruginosa, inhibits human airway cell Duox activity by depleting intracellular stores of NADPH, as it generates intracellular superoxide. Long-term exposure of human airway (primary normal human bronchial and NCI-H292) cells to pyocyanin also blocks induction of Duox1 by Th2 cytokines (IL-4, IL-13), which was prevented by the antioxidants glutathione and N-acetylcysteine. Furthermore, we showed that low concentrations of pyocyanin blocked killing of wild-type P. aeruginosa by the Duox/SCN(-)/LPO system on primary normal human bronchial epithelial cells. Thus, pyocyanin can subvert Pseudomonas killing by the Duox-based system as it imposes oxidative stress on the host. We also show that lactoperoxidase can oxidize pyocyanin, thereby diminishing its cytotoxicity. These data establish a novel role for pyocyanin in the survival of P. aeruginosa in human airways through competitive redox-based reactions between the pathogen and host.  相似文献   

17.
Nitric oxide is inactivated by the bacterial pigment pyocyanin.   总被引:9,自引:0,他引:9       下载免费PDF全文
Pyocyanin is a phenazine pigment produced by the bacterium Pseudomonas aeruginosa and found in human lung secretions. Micromolar concentrations of pyocyanin inhibited the bioactivity of endothelium-derived relaxing factor (EDRF) generated from bovine pulmonary-artery endothelium in response to bradykinin. This inhibition was reversed by perfusing the EDRF-bioassay system with pyocyanin-free buffer for 15 min, but persisted in the presence of superoxide dismutase (20 units/ml). When nitric oxide, the major component of EDRF, was passed into an aqueous solution of pyocyanin in the absence of O2, a rapid colour change occurred from blue to pink; m.s. analysis of the products showed that the pyocyanin had been converted into a nitrosylated species.  相似文献   

18.
Two different strategies for molecular analysis of bacterial diversity, 16S rDNA cloning and denaturing gradient gel electrophoresis (DGGE), were combined into a single protocol that took advantage of the best attributes of each: the ability of cloning to package DNA sequence information and the ability of DGGE to display a community profile. In this combined protocol, polymerase chain reaction products from environmental DNA were cloned, and then DGGE was used to screen the clone libraries. Both individual clones and pools of randomly selected clones were analyzed by DGGE, and these migration patterns were compared to the conventional DGGE profile produced directly from environmental DNA. For two simple bacterial communities (biofilm from a humics-fed laboratory reactor and planktonic bacteria filtered from an urban freshwater pond), pools of 35–50 clones produced DGGE profiles that contained most of the bands visible in the conventional DGGE profiles, indicating that the clone pools were adequate for identifying the dominant genotypes. However, DGGE profiles of two different pools of 50 clones from a lawn soil clone library were distinctly different from each other and from the conventional DGGE profile, indicating that this small number of clones poorly represented the bacterial diversity in soil. Individual clones with the same apparent DGGE mobility as prominent bands in the humics reactor community profiles were sequenced from the clone plasmid DNA rather than from bands excised from the gel. Because a longer fragment was cloned (∼1500 bp) than was actually analyzed in DGGE (∼350 bp), far more sequence information was available using this approach that could have been recovered from an excised gel band. This clone/DGGE protocol permitted rapid analysis of the microbial diversity in the two moderately complex systems, but was limited in its ability to represent the diversity in the soil microbial community. Nonetheless, clone/DGGE is a promising strategy for fractionating diverse microbial communities into manageable subsets consisting of small pools of clones.  相似文献   

19.
Diversity of indigenous microbial consortia and natural occurrence of obligate hydrocarbon-degrading bacteria (OHCB) are of central importance for efficient bioremediation techniques. To investigate the microbial population dynamics and composition of oil-degrading consortia, we have established a series of identical oil-degrading mesocosms at three different locations, Bangor (Menai Straits, Irish Sea), Helgoland (North Sea) and Messina (Messina Straits, Mediterranean Sea). Changes in microbial community composition in response to oil spiking, nutrient amendment and filtration were assessed by ARISA and DGGE fingerprinting and 16Sr RNA gene library analysis. Bacterial and protozoan cell numbers were quantified by fluorescence microscopy. Very similar microbial population sizes and dynamics, together with key oil-degrading microorganisms, for example, Alcanivorax borkumensis, were observed at all three sites; however, the composition of microbial communities was largely site specific and included variability in relative abundance of OHCB. Reduction in protozoan grazing had little effect on prokaryotic cell numbers but did lead to a decrease in the percentage of A.?borkumensis 16S rRNA genes detected in clone libraries. These results underline the complexity of marine oil-degrading microbial communities and cast further doubt on the feasibility of bioaugmentation practices for use in a broad range of geographical locations.  相似文献   

20.
We aimed to determine the effects of oxidative stress in urinary tract infection (UTI). One hundred sixty-four urine samples obtained from patients with the prediagnosis of acute UTI admitted to the Faculty of Medicine, Kahramanmaras Sutcu Imam University, were included in this study. Urine cultures were performed according to standard techniques. Urinary isolates were identified by using API ID 32E. The catalase and superoxide dismutase activity and the lipid peroxidation levels known as oxidative stress markers were measured in all urine samples. Thirty-six pathogen microorganisms were identified in positive urine cultures. These microorganisms were as follows: 23 (63.8%) E coli, 5 (13.8%) P mirabilis, 4 (11.1%) K pneumoniae, 2 (5.5%) Candida spp, 1 (2.7%) S saprophyticus, and 1 (2.7%) P aeruginosa. It was observed that lipid peroxidation levels were increased while catalase and superoxide dismutase activities were decreased in positive urine cultures, compared to negative cultures. We conclude that urinary tract infection causes oxidative stress, increases lipid peroxidation level, and leads to insufficiency of antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号