首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RNA triphosphatase component (CaCet1p) of the mRNA capping apparatus of the pathogenic fungus Candida albicans differs mechanistically and structurally from the RNA triphosphatase of mammals. Hence, CaCet1p is an attractive antifungal target. Here we identify a C-terminal catalytic domain of CaCet1p from residue 257 to 520 and characterize a manganese-dependent and cobalt-dependent NTPase activity intrinsic to CaCet1p. The NTPase can be exploited to screen in vitro for inhibitors. The amino acids that comprise the active site of CaCet1p were identified by alanine-scanning mutagenesis, which was guided by the crystal structure of the homologous RNA triphosphatase from Saccharomyces cerevisiae (Cet1p). Thirteen residues required for the phosphohydrolase activity of CaCet1p (Glu287, Glu289, Asp363, Arg379, Lys396, Glu420, Arg441, Lys443, Arg445, Asp458, Glu472, Glu474 and Glu476) are located within the hydrophilic interior of an eight-strand β barrel of Cet1p. Each of the eight strands contributes at least one essential amino acid. The essential CaCet1p residues include all of the side chains that coordinate manganese and sulfate (i.e., γ phosphate) in the Cet1p product complex. These results suggest that the active site structure and catalytic mechanism are conserved among fungal RNA triphosphatases.  相似文献   

2.
Cet1, the RNA triphosphatase component of the yeast mRNA capping apparatus, catalyzes metal-dependent gamma phosphate hydrolysis within the hydrophilic interior of a topologically closed 8-strand beta barrel (the "triphosphate tunnel"). We used structure-guided alanine scanning to identify 6 side chains within the triphosphate tunnel that are essential for phosphohydrolase activity in vitro and in vivo: Arg393, Glu433, Arg458, Arg469, Asp471 and Thr473. Alanine substitutions at two positions, Asp377 and Lys409, resulted in partial catalytic defects and a thermosensitive growth phenotype. Structure-function relationships were clarified by introducing conservative substitutions. Five residues were found to be nonessential: Lys309, Ser395, Asp397, Lys427 Asn431, and Lys474. The present findings, together with earlier mutational analyses, reveal an unusually complex active site in which 15 individual side chains in the tunnel cavity are important for catalysis, and each of the 8 strands of the beta barrel contributes at least one functional constituent. The active site residues fall into three classes: (i) those that participate directly in catalysis via coordination of the gamma phosphate or the metal; (ii) those that make critical water-mediated contacts with the gamma phosphate or the metal; and (iii) those that function indirectly via interactions with other essential side chains or by stabilization of the tunnel structure.  相似文献   

3.
The 464-amino acid baculovirus LEF4 protein is a bifunctional mRNA capping enzyme with triphosphatase and guanylyltransferase activities. The N-terminal half of LEF4 constitutes an autonomous triphosphatase catalytic domain. The LEF4 triphosphatase belongs to a family of metal-dependent phosphohydrolases, which includes the RNA triphosphatases of fungi, protozoa, Chlorella virus and poxviruses. The family is defined by two glutamate-containing motifs (A and C), which form a metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight stranded β barrel (the so-called ‘triphosphate tunnel’). Here we probed whether baculovirus LEF4 is a member of the tunnel subfamily, via mutational mapping of amino acids required for triphosphatase activity. We identified four new essential side chains in LEF4 via alanine scanning and illuminated structure–activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight five acidic and four basic amino acids that are likely to comprise the LEF4 triphosphatase active site (Glu9, Glu11, Arg51, Arg53, Glu97, Lys126, Arg179, Glu181 and Glu183). These nine essential residues are conserved in LEF4 orthologs from all strains of baculoviruses. We discerned no pattern of clustering of the catalytic residues of the baculovirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). However, there is similarity to the active site of vaccinia RNA triphosphatase. We infer that the baculovirus and poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Synergistic activation of the LEF4 triphosphatase by manganese and magnesium suggests a two-metal mechanism of γ phosphate hydrolysis.  相似文献   

4.
RNA triphosphatase catalyzes the first step in mRNA capping. The RNA triphosphatases of fungi and protozoa are structurally and mechanistically unrelated to the analogous mammalian enzyme, a situation that recommends RNA triphosphatase as an anti-infective target. Fungal and protozoan RNA triphosphatases belong to a family of metal-dependent phosphohydrolases exemplified by yeast Cet1. The Cet1 active site is unusually complex and located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel). Here we probe the active site of Plasmodium falciparum RNA triphosphatase by targeted mutagenesis and thereby identify eight residues essential for catalysis. The functional data engender an improved structural alignment in which the Plasmodium counterparts of the Cet1 tunnel strands and active-site functional groups are located with confidence. We gain insight into the evolution of the Cet1-like triphosphatase family by noting that the heretofore unique tertiary structure and active site of Cet1 are recapitulated in recently deposited structures of proteins from Pyrococcus (PBD 1YEM) and Vibrio (PDB 2ACA). The latter proteins exemplify a CYTH domain found in CyaB-like adenylate cyclases and mammalian thiamine triphosphatase. We conclude that the tunnel fold first described for Cet1 is the prototype of a larger enzyme superfamily that includes the CYTH branch. This superfamily, which we name "triphosphate tunnel metalloenzyme," is distributed widely among bacterial, archaeal, and eukaryal taxa. It is now clear that Cet1-like RNA triphosphatases did not arise de novo in unicellular eukarya in tandem with the emergence of caps as the defining feature of eukaryotic mRNA. They likely evolved by incremental changes in an ancestral tunnel enzyme that conferred specificity for RNA 5'-end processing.  相似文献   

5.
Martins A  Shuman S 《Biochemistry》2002,41(45):13403-13409
Baculovirus phosphatase (BVP) and mammalian capping enzyme (Mce1) are members of the RNA triphosphatase branch of the cysteine phosphatase superfamily. Although RNA triphosphatases have a core alpha/beta fold similar to other cysteine phosphatases, there is little conservation of primary structure outside of the cysteine-containing P-loop motif, HCxxxxxR(S/T), that comprises the active site. However, there is extensive primary structure conservation between members of the RNA triphosphatase branch, whether from cellular or viral sources and whether they are bifunctional capping enzymes such as Mce1 or monofunctional RNA phosphatases such as BVP. To evaluate the functional significance of such sequence conservation, we performed a mutational analysis of 14 residues of BVP. We identified three side chains (Trp6, Lys25, and Arg153) as essential for triphosphatase activity in vitro, i.e., W6A, K25A, and R153A were <0.1% as active as wild-type BVP, and were unable to complement a yeast RNA triphosphatase null mutant in vivo. Six other BVP residues (Thr62, Tyr67, Tyr68, Lys82, Glu158, and Arg159) were deemed functionally important, i.e., Ala mutations reduced triphosphatase activity to <20% of wild-type. On the basis of the locations of the equivalent amino acids in the Mce1 crystal structure, we surmise that the essential/important BVP residues ensure proper conformation of the catalytic P-loop (e.g., Arg153 and Tyr68) or other elements of the tertiary structure. Our results highlight a conserved Trp6-Lys25 pi-cation pair essential for BVP function.  相似文献   

6.
Saccharomyces cerevisiae Cet1 and Schizosaccharomyces pombe Pct1 are the essential RNA triphosphatase components of the mRNA capping apparatus of budding and fission yeast, respectively. Cet1 and Pct1 share a baroque active site architecture and a homodimeric quaternary structure. The active site is located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel) that rests on a globular core domain (the pedestal) composed of elements from both protomers of the homodimer. Earlier studies of the effects of alanine cluster mutations at the crystallographic dimer interface of Cet1 suggested that homodimerization is important for triphosphatase function in vivo, albeit not for catalysis. Here, we studied the effects of 14 single-alanine mutations on Cet1 activity and thereby pinpointed Asp280 as a critical side chain required for dimer formation. We find that disruption of the dimer interface is lethal in vivo and renders Cet1 activity thermolabile at physiological temperatures in vitro. In addition, we identify individual residues within the pedestal domain (Ile470, Leu519, Ile520, Phe523, Leu524, and Ile530) that stabilize Cet1 in vivo and in vitro. In the case of Pct1, we show that dimerization depends on the peptide segment 41VPKIEMNFLN50 located immediately prior to the start of the Pct1 catalytic domain. Deletion of this peptide converts Pct1 into a catalytically active monomer that is defective in vivo in S. pombe and hypersensitive to thermal inactivation in vitro. Our findings suggest an explanation for the conservation of quaternary structure in fungal RNA triphosphatases, whereby the delicate tunnel architecture of the active site is stabilized by the homodimeric pedestal domain.  相似文献   

7.
Lima CD  Wang LK  Shuman S 《Cell》1999,99(5):533-543
RNA triphosphatase is an essential mRNA processing enzyme that catalyzes the first step in cap formation. The 2.05 A crystal structure of yeast RNA triphosphatase Cet1p reveals a novel active site fold whereby an eight-stranded beta barrel forms a topologically closed triphosphate tunnel. Interactions of a sulfate in the center of the tunnel with a divalent cation and basic amino acids projecting into the tunnel suggest a catalytic mechanism that is supported by mutational data. Discrete surface domains mediate Cet1p homodimerization and Cet1p binding to the guanylyltransferase component of the capping apparatus. The structure and mechanism of fungal RNA triphosphatases are completely different from those of mammalian mRNA capping enzymes. Hence, RNA triphosphatase presents an ideal target for structure-based antifungal drug discovery.  相似文献   

8.
Cet1, the RNA triphosphatase component of the yeast mRNA capping apparatus, catalyzes metal-dependent gamma-phosphate hydrolysis within the hydrophilic interior of an eight-strand beta barrel (the "triphosphate tunnel"), which rests upon a globular protein core (the "pedestal"). We performed a structure-guided alanine scan of 17 residues located in the tunnel (Ser(373), Thr(375), Gln(405), His(411), Ser(429), Glu(488), Thr(490)), on the tunnel's outer surface (Ser(378), Ser(487), Thr(489), His(491)), at the tunnel-pedestal interface (Ile(304), Met(308)) and in the pedestal (Asp(315), Lys(317), Arg(321), Asp(425)). Alanine mutations at 14 positions had no significant effect on Cet1 phosphohydrolase activity in vitro and had no effect on Cet1 function in vivo. Two of the mutations (R321A and D425A) elicited a thermosensitive (ts) yeast growth phenotype. The R321A and D425A proteins had full phosphohydrolase activity in vitro, but were profoundly thermolabile. Arg(321) and Asp(425) interact to form a salt bridge within the pedestal that tethers two of the strands of the tunnel. Mutations R321Q and D411N resulted in ts defects in vivo and in vitro, as did the double-mutant R321A-D435A, whereas the R321K protein was fully stable in vivo and in vitro. These results highlight the critical role of the buried salt bridge in Cet1 stability. Replacement of Ser(429) by alanine or valine elicited a cold-sensitive (cs) yeast growth phenotype. The S429A and S429V proteins were fully active when produced in bacteria at 37 degrees C, but were inactive when produced at 17 degrees C. Replacement of Ser(429) by threonine partially suppressed the cold sensitivity of the Cet1 phosphohydrolase, but did not suppress the cs growth defect in yeast.  相似文献   

9.
Saccharomyces cerevisiae RNA triphosphatase Cet1 is an essential component of the yeast mRNA capping apparatus. The active site of Cet1 resides within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel) that is supported by a globular hydrophobic core. The homodimeric quaternary structure of Cet1 is formed by a network of contacts between the partner protomers. By studying the effects of alanine-cluster mutations, we highlight the contributions of two separate facets of the crystallographic dimer interface to Cet1 function in vivo. One essential facet of the interface entails hydrophobic cross-dimer interactions of Cys(330) and Val(331) and a cross-dimer hydrogen bond of Asp(280) with the backbone amide of Gln(329). The second functionally relevant dimer interface involves hydrophobic side-chain interactions of Phe(272) and Leu(273). Ala-cluster mutations involving these residues elicited lethal or severe temperature-sensitive phenotypes that were suppressed completely by fusion of the mutated triphosphatases to the guanylyltransferase domain of mammalian capping enzyme. The recombinant D279A-D280A and F272A-L273A proteins retained phosphohydrolase activity but sedimented as monomers. These results indicate that a disruption of the dimer interface is uniquely deleterious when the yeast RNA triphosphatase must function in concert with the endogenous yeast guanylyltransferase. We also identify key residue pairs in the hydrophobic core of the Cet1 protomer that support the active site tunnel and stabilize the triphosphatase in vivo.  相似文献   

10.
Trypanosoma brucei RNA triphosphatase TbCet1 is a 252-amino acid polypeptide that catalyzes the first step in mRNA cap formation. By performing an alanine scan of TbCet1, we identified six amino acids that are essential for triphosphatase activity (Glu-52, Arg-127, Glu-168, Arg-186, Glu-216, and Glu-218). These results consolidate the proposal that protozoan, fungal, and Chlorella virus RNA triphosphatases belong to a single family of metal-dependent NTP phosphohydrolases with a unique tunnel active site composed of eight beta strands. Limited proteolysis of TbCet1 suggests that the hydrophilic N terminus is surface-exposed, whereas the catalytic core domain is tightly folded with the exception of a protease-sensitive loop (76WKGRRARKT84) between two of the putative tunnel strands. The catalytic domain of TbCet1 is extraordinarily thermostable. It remains active after heating for 2 h at 75 degrees C. Analysis by zonal velocity sedimentation indicates that TbCet1 is a monomeric enzyme, unlike fungal RNA triphosphatases, which are homodimers. We show that tripolyphosphate is a potent competitive inhibitor of TbCet1 (Ki 1.4 microm) that binds more avidly to the active site than the ATP substrate (Km 25 microm). We present evidence of synergistic activation of the TbCet1 triphosphatase by manganese and magnesium, consistent with a two-metal mechanism of catalysis. Our findings provide new insight to the similarities (in active site tertiary structure and catalytic mechanism) and differences (in quaternary structure and thermal stability) among the different branches of the tunnel enzyme family.  相似文献   

11.
Fcp1 is an essential protein serine phosphatase that dephosphorylates the C-terminal domain (CTD) of RNA polymerase II. By testing the effects of serial N- and C-terminal deletions of the 723-amino acid Schizosaccharomyces pombe Fcp1, we defined a minimal phosphatase domain spanning amino acids 156-580. We employed site-directed mutagenesis (introducing 24 mutations at 14 conserved positions) to locate candidate catalytic residues. We found that alanine substitutions for Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298) abrogated the phosphatase activity with either p-nitrophenyl phosphate or CTD-PO(4) as substrates. Structure-activity relationships were determined by introducing conservative substitutions at each essential position. Our results, together with previous mutational studies, highlight a constellation of seven amino acids (Asp(170), Asp(172), Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298)) that are conserved in all Fcp1 orthologs and likely comprise the active site. Five of these residues (Asp(170), Asp(172), Lys(280), Asp(297), and Asp(298)) are conserved at the active site of T4 polynucleotide 3'-phosphatase, suggesting that Fcp1 and T4 phosphatase are structurally and mechanistically related members of the DXD phosphotransferase superfamily.  相似文献   

12.
Sawaya R  Shuman S 《Biochemistry》2003,42(27):8240-8249
RNA guanylyltransferase is an essential enzyme that catalyzes the second of three steps in the synthesis of the 5'-cap structure of eukaryotic mRNA. Here we conducted a mutational analysis of the guanylyltransferase domain of the mouse capping enzyme Mce1. We introduced 50 different mutations at 22 individual amino acids and assessed their effects on Mce1 function in vivo in yeast. We identified 16 amino acids as being essential for Mce1 activity (Arg299, Arg315, Asp343, Glu345, Tyr362, Asp363, Arg380, Asp438, Gly439, Lys458, Lys460, Asp468, Arg530, Asp532, Lys533, and Asn537) and clarified structure-activity relationships by testing the effects of conservative substitutions. The new mutational data for Mce1, together with prior mutational studies of Saccharomyces cerevisiae guanylyltransferase and the crystal structures of Chlorella virus and Candida albicans guanylyltransferases, provide a coherent picture of the functional groups that comprise and stabilize the active site. Our results extend and consolidate the hypothesis of a shared structural basis for catalysis by RNA capping enzymes, DNA ligases, and RNA ligases, which comprise a superfamily of covalent nucleotidyl transferases defined by a constellation of conserved motifs. Analysis of the effects of motif VI mutations on Mce1 guanylyltransferase activity in vitro highlights essential roles for Arg530, Asp532, Lys533, and Asn537 in GTP binding and nucleotidyl transfer.  相似文献   

13.
At sites of vascular injury, von Willebrand factor (VWF) mediates platelet adhesion through binding to platelet glycoprotein Ib (GPIb). Previous studies identified clusters of charged residues within VWF domain A1 that were involved in binding GPIb or botrocetin. The contribution of 28 specific residues within these clusters was analyzed by mutating single amino acids to alanine. Binding to a panel of six conformation-dependent monoclonal antibodies was decreased by mutations at Asp(514), Asp(520), Arg(552), and Arg(611) (numbered from the N-terminal Ser of the mature processed VWF), suggesting that these residues are necessary for domain A1 folding. Binding of (125)I-botrocetin was decreased by mutations at Arg(629), Arg(632), Arg(636), and Lys(667). Ristocetin-induced and botrocetin-induced binding to GPIb both were decreased by mutations at Lys(599), Arg(629), and Arg(632); among this group the K599A mutant was unique because (125)I-botrocetin binding was normal, suggesting that Lys(599) interacts directly with GPIb. Ristocetin and botrocetin actions on VWF were dissociated readily by mutagenesis. Ristocetin-induced binding to GPIb was reduced selectively by substitutions at positions Lys(534), Arg(571), Lys(572), Glu(596), Glu(613), Arg(616), Glu(626), and Lys(642), whereas botrocetin-induced binding to GPIb was decreased selectively by mutations at Arg(636) and Lys(667). The binding of monoclonal antibody B724 involved Lys(660) and Arg(663), and this antibody inhibits (125)I-botrocetin binding to VWF. The crystal structure of the A1 domain suggests that the botrocetin-binding site overlaps the monoclonal antibody B724 epitope on helix 5 and spans helices 4 and 5. The binding of botrocetin also activates the nearby VWF-binding site for GPIb that involves Lys(599) on helix 3.  相似文献   

14.
15.
T4 polynucleotide kinase (Pnk) is a bifunctional 5′-kinase/3′-phosphatase that aids in the repair of broken termini in RNA by converting 3′-PO4/5′-OH ends into 3′-OH/5′-PO4 ends, which are then sealed by RNA ligase. Here we have employed site-directed mutagenesis (introducing 31 mutations at 16 positions) to locate candidate catalytic residues within the 301 amino acid Pnk polypeptide. We found that alanine substitutions for Arg38 and Arg126 inactivated the 5′-kinase, but spared the 3′-phosphatase activity. Conservative substitutions of lysine or glutamine for Arg38 and Arg126 did not restore 5′-kinase activity. These results, together with previous mutational studies, highlight a constellation of five amino acids (Lys15, Ser16, Asp35, Arg38 and Arg126) that likely comprise the 5′-kinase active site. Four of these residues are conserved at the active sites of adenylate kinases (Adk), suggesting that Pnk and Adk are structurally and mechanistically related. We found that alanine substitutions for Asp165, Asp167, Arg176, Arg213, Asp254 and Asp278 inactivated the 3′-phosphatase, but spared the 5′-kinase. Conservative substitutions of asparagine or glutamate for Asp165, Asp167 and Asp254 did not revive the 3′-phosphatase activity, nor did lysine substitutions for Arg176 and Arg213. Glutamate in lieu of Asp278 partially restored activity, whereas asparagine had no salutary effect. Alanine substitutions for Arg246 and Arg279 partially inactivated the 3′-phosphatase; the conservative R246K change restored activity, whereas R279K had no benefit. The essential phosphatase residues Asp165 and Asp167 are located within a 165DxDxT169 motif that defines a superfamily of phosphotransferases. Our data suggest that the 3′-phosphatase active site incorporates multiple additional functional groups.  相似文献   

16.
RNA triphosphatase catalyzes the first step in mRNA cap formation which entails the cleavage of the β–γ phosphoanhydride bond of triphosphate-terminated RNA to yield a diphosphate end that is then capped with GMP by RNA guanylyltransferase. Here we characterize a 303 amino acid RNA triphosphatase (Pct1p) encoded by the fission yeast Schizosaccharomyces pombe. Pct1p hydrolyzes the γ phosphate of triphosphate-terminated poly(A) in the presence of magnesium. Pct1p also hydrolyzes ATP to ADP and Pi in the presence of manganese or cobalt (Km = 19 µM ATP; kcat = 67 s–1). Hydrolysis of 1 mM ATP is inhibited with increasing potency by inorganic phosphate (I0.5 = 1 mM), pyrophosphate (I0.5 = 0.4 mM) and tripolyphosphate (I0.5 = 30 µM). Velocity sedimentation indicates that Pct1p is a homodimer. Pct1p is biochemically and structurally similar to the catalytic domain of Saccharomyces cerevisiae RNA triphosphatase Cet1p. Mechanistic conservation between Pct1p and Cet1p is underscored by a mutational analysis of the putative metal-binding site of Pct1p. Pct1p is functional in vivo in S.cerevisiae in lieu of Cet1p, provided that it is coexpressed with the S.pombe guanylyltransferase. Pct1p and other yeast RNA triphosphatases are completely unrelated, mechanistically and structurally, to the metazoan RNA triphosphatases, suggesting an abrupt evolutionary divergence of the capping apparatus during the transition from fungal to metazoan species.  相似文献   

17.
Molybdenum enzymes containing the pterin cofactor are a diverse group of enzymes that catalyse in general oxygen atom transfer reactions. Aiming at studying the amino acid residues, which are important for the enzymatic specificity, we used nitrate reductase from Ralstonia eutropha (R.e.NAP) as a model system for mutational studies at the active site. We mutated amino acids at the Mo active site (Cys181 and Arg421) as well as amino acids in the funnel leading to it (Met182, Asp196, Glu197, and the double mutant Glu197-Asp196). The mutations were made on the basis of the structural comparison of nitrate reductases with formate dehydrogenases (FDH), which show very similar three-dimensional structures, but clear differences in amino acids surrounding the active site. For mutations Arg421Lys and Glu197Ala we found a reduced nitrate activity while the other mutations resulted in complete loss of activity. In spite of the partial of total loss of nitrate reductase activity, these mutants do not, however, display FDH activity.  相似文献   

18.
The anticoagulant human plasma serine protease, activated protein C (APC), inhibits blood coagulation by specific inactivation of the coagulation cofactors factor Va (FVa) and factor VIIIa. Site-directed mutagenesis of residues in three surface loops of a positive exosite located on APC was used to identify residues that play a significant role in binding to FVa. Eighteen different residues were mutated to alanine singly, in pairs, or in triple mutation combinations. Mutant APC proteins were purified and characterized for their inactivation of FVa. Three APC residues were identified that provide major contributions to FVa interactions: Lys(193), Arg(229), and Arg(230). In addition, four residues made significant minor contributions to FVa interactions: Lys(191), Lys(192), Asp(214), and Glu(215). All of these residues primarily contribute to APC cleavage at Arg(506) in FVa and play a small role in the interaction of APC with the Arg(306) cleavage site. In conjunction with previously published work, these results define an extensive FVa binding site in the positive exosite of APC that is primarily involved in binding and cleaving at Arg(506) on FVa.  相似文献   

19.
Guan L  Nakae T 《Journal of bacteriology》2001,183(5):1734-1739
The MexABM efflux pump exports structurally diverse xenobiotics, utilizing the proton electrochemical gradient to confer drug resistance on Pseudomonas aeruginosa. The MexB subunit traverses the inner membrane 12 times and has two, two, and one charged residues in putative transmembrane segments 2 (TMS-2), TMS-4, and TMS-10, respectively. All five residues were mutated, and MexB function was evaluated by determining the MICs of antibiotics and fluorescent dye efflux. Replacement of Lys342 with Ala, Arg, or Glu and Glu346 with Ala, Gln, or Asp in TMS-2 did not have a discernible effect. Ala, Asn, or Lys substitution for Asp407 in TMS-4, which is well conserved, led to loss of activity. Moreover, a mutant with Glu in place of Asp407 exhibited only marginal function, suggesting that the length of the side chain at this position is important. The only replacements for Asp408 in TMS-4 or Lys939 in TMS-10 that exhibited significant function were Glu and Arg, respectively, suggesting that the native charge at these positions is required. In addition, double neutral mutants or mutants in which the charged residues Asp407 and Lys939 or Asp408 and Lys939 were interchanged completely lost function. An Asp408-->Glu/Lys939-->Arg mutant retained significant activity, while an Asp407-->Glu/Lys939-->Arg mutant exhibited only marginal function. An Asp407-->Glu/Asp408-->Glu double mutant also lost activity, but significant function was restored by replacing Lys939 with Arg (Asp407-->Glu/Asp408-->Glu/Lys939-->Arg). Taken as a whole, the findings indicate that Asp407, Asp408, and Lys939 are functionally important and raise the possibility that Asp407, Asp408, and Lys939 may form a charge network between TMS-4 and TMS-10 that is important for proton translocation and/or energy coupling.  相似文献   

20.
We have previously determined that the C2-domain of human factor V (residues 2037-2196) is required for expression of cofactor activity and binding to phosphatidylserine (PS)-containing membranes. Naturally occurring factor V inhibitors and a monoclonal antibody (HV-1) recognized epitopes in the amino terminus of the C2-domain (residues 2037-2087) and blocked PS binding. We have now investigated the function of individual amino acids within the C2-domain using charge to alanine mutagenesis. Charged residues located within the C2-domain were changed to alanine in clusters of 1-3 mutations per construct. In addition, mutants W2063A, W2064A, (W2063, W2064)A, and L2116A were constructed as well. The resultant 30 mutants were expressed in COS cells using a B-domain deleted factor V construct (rHFV des B). All mutants were expressed efficiently based on the polyclonal antibody ELISA. The charged residues, Arg(2074), Asp(2098), Arg(2171), Arg(2174), and Glu(2189) are required for maintaining the structural integrity of the C2-domain of factor V. Four of these residues (Arg(2074), Asp(2098), Arg(2171), and Arg(2174)) correspond to positions in the factor VIII C-type domains that have been identified as point mutations in patients with hemophilia A. The epitope for the inhibitory monoclonal antibody HV-1 has been localized to Lys(2060) through Glu(2069) in the factor V C2-domain. The epitope for the inhibitory monoclonal antibody 6A5 is composed of amino acids His(2128) through Lys(2137). The PS-binding site in the factor V C2-domain includes amino acid residues Trp(2063) and Trp(2064). This site overlaps with the epitope for monoclonal antibody HV-1. These factor V C2-domain mutants should provide valuable tools for further defining the molecular interactions responsible for factor V binding to phospholipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号