首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level of excision repair and the inhibition and recovery of semiconservative DNA synthesis were examined following the induction of non-dimer DNA damages by solar ultraviolet radiation in a mutant cell line, DRP 36, derived from ICR 2A frog cells that is hypersensitive to these lesions. A relatively pure population of non-dimer photoproducts was produced by exposure of cells to the Mylar-filtered solar UV wavelengths produced by a fluorescent sunlamp followed by treatment with photoreactivating light (PRL) which removes most of the small yield of dimers induced by the irradiation. Using a modification of the bromodeoxyuridine (BrdUrd) photolysis assay, that enhances the sensitivity of this assay, it was found that DRP 36 cells perform a significantly lower level of excision repair following the induction of non-dimer DNA damages compared with the ICR 2A cells. In contrast, the level of excision repair of 254-nm-induced dimers was similar in the two cell lines. In addition, the induction of non-dimer damages caused a greater inhibition of DNA synthesis that persisted for a longer period of time in the mutant compared with the parental cells. Hence, these results indicate that the DRP 36 cells are deficient in the repair of at least one type of solar UV-induced non-dimer lesion.  相似文献   

2.
The constitutive and inducible levels of enzymatic photorepair (EPR) in growing and arrested ICR 2A frog cells were studied using clonogenic assays. Both arrested and growing cells exhibited an equal level of constitutive EPR following ultraviolet irradiation. However, only arrested, but not growing, cells treated with a low fluence of UV (90% survival) developed an enhanced EPR. The induced process developed transiently with a peak 3 days after pre-irradiation, and was totally blocked by a nontoxic concentration of cycloheximide. In addition, the induced EPR is unique to low fluences of UV.  相似文献   

3.
Dynamin-related proteins are large GTPases that deform and cause fission of membranes. The DRP1 family of Arabidopsis thaliana has five members of which DRP1A, DRP1C, and DRP1E are widely expressed. Likely functions of DRP1A were identified by studying rsw9, a null mutant of the Columbia ecotype that grows continuously but with altered morphology. Mutant roots and hypocotyls are short and swollen, features plausibly originating in their cellulose-deficient walls. The reduction in cellulose is specific since non-cellulosic polysaccharides in rsw9 have more arabinose, xylose, and galactose than those in wild type. Cell plates in rsw9 roots lack DRP1A but still retain DRP1E. Abnormally placed and often incomplete cell walls are preceded by abnormally curved cell plates. Notwithstanding these division abnormalities, roots and stems add new cells at wild-type rates and organ elongation slows because rsw9 cells do not grow as long as wild-type cells. Absence of DRP1A reduces endocytotic uptake of FM4-64 into the cytoplasm of root cells and the hypersensitivity of elongation and radial swelling in rsw9 to the trafficking inhibitor monensin suggests that impaired endocytosis may contribute to the development of shorter fatter roots, probably by reducing cellulose synthesis.  相似文献   

4.
Endocytosis is an essential cellular process that allows cells to internalise proteins and lipid from the plasma membrane to change its composition and sense and respond to alterations in their extracellular environment. In animal cells, the protein dynamin is involved in membrane scission during endocytosis, allowing invaginating vesicles to become internalised. Arabidopsis encodes two proteins that have all the domains essential for function in the animal dynamins, Dynamin Related Proteins 2A and 2B (DRP2A and 2B). These proteins show very high sequence identity and are both expressed throughout the plant. Single mutants exhibited no obvious phenotypes but double mutants could be recovered as gametophytes carrying mutant copies of both DRP2A and DRP2B were not transmitted to the next generation. Immunolabelling localised DRP2A/B to the tips of root hairs, a site where rapid endocytosis takes place. Constitutive expression of a GTPase defective Dominant Negative form of DRP2A/B did not allow the recovery of plants expressing this protein at a detectable level, demonstrating an interference with endogenous dynamin. Using an inducible expression system Dominant Negative protein was transiently expressed at levels several fold that of the endogenous proteins. Inducible expression of the Dominant Negative protein resulted in reduced endocytosis at the tips of root hairs, as measured by internalisation of an endocytic tracer dye, and resulted in root hairs bulging and bursting. Together these data support a role for DRP2A/B in endocytosis in Arabidopsis, and demonstrates that the function of at least one of these closely related proteins is essential for plant growth.  相似文献   

5.
Japanese encephalitis virus (JEV) core protein was detected in both the nucleoli and cytoplasm of mammalian and insect cell lines infected with JEV or transfected with the expression plasmid of the core protein. Mutation analysis revealed that Gly(42) and Pro(43) in the core protein are essential for the nuclear and nucleolar localization. A mutant M4243 virus in which both Gly(42) and Pro(43) were replaced by Ala was recovered by plasmid-based reverse genetics. In C6/36 mosquito cells, the M4243 virus exhibited RNA replication and protein synthesis comparable to wild-type JEV, whereas propagation in Vero cells was impaired. The mutant core protein was detected in the cytoplasm but not in the nucleus of either C6/36 or Vero cell lines infected with the M4243 virus. The impaired propagation of M4243 in mammalian cells was recovered by the expression of wild-type core protein in trans but not by that of the mutant core protein. Although M4243 mutant virus exhibited a high level of neurovirulence comparable to wild-type JEV in spite of the approximately 100-fold-lower viral propagation after intracerebral inoculation to 3-week-old mice of strain Jcl:ICR, no virus was recovered from the brain after intraperitoneal inoculation of the mutant. These results indicate that nuclear localization of JEV core protein plays crucial roles not only in the replication in mammalian cells in vitro but also in the pathogenesis of encephalitis induced by JEV in vivo.  相似文献   

6.
DNA-protein crosslinks (DPC) were measured following exposure to the solar UV wavelengths produced by a fluorescent sunlamp in ICR 2A frog cells and two solar UV-sensitive mutants derived from this cell line. Approx. 5-7 DPC per 10(10) dalton were induced in these cells by either 150 kJ/m2 of sunlamp UV greater than 315 nm plus photoreactivating light (PRL) or 10 kJ/m2 of sunlamp UV greater than 295 nm. The irradiated cells were then incubated for 0-24 h and the level of DPC measured using alkaline elution. It was found for the ICR 2A cells exposed to sunlamp UV greater than 315 nm that the level of DPC increased about 3-fold during a 2-h postirradiation incubation and then decreased. The mutant cell lines also showed an enhancement in the level of DPC following irradiation, although it was much less pronounced and the levels decreased much more rapidly. In a similar fashion, the level of DPC increased in ICR 2A cells exposed to sunlamp UV greater than 295 nm with more than a 5-fold enhancement after a 4-h incubation. Once again, the mutant cell lines showed an increase in the level of DPC that was smaller and more transient than the effect in the ICR 2A cells. These results suggests that this enhancement in DPC may be indicative of a process that plays a role in cellular survival following solar UV-irradiation.  相似文献   

7.
HetR is the master regulator of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Genetic selection was used to identify 33 amino acid substitutions in HetR that reduced the proportion of cells undergoing heterocyst differentiation to less than 2%. Conservative substitutions in the wild-type HetR protein revealed three mutations that dramatically reduced the amount of heterocyst differentiation when the mutant allele was present in place of the wild-type allele on a replicating plasmid in a mutant lacking hetR on the chromosome. An H69Y substitution resulted in heterocyst formation among less than 0.1% of cells, and D17E and G36A substitutions resulted in a Het- phenotype, compared to heterocyst formation among approximately 25% of cells with the wild-type hetR under the same conditions. The D17E substitution prevented DNA binding activity exhibited by wild-type HetR in mobility shift assays, whereas G36A and H69Y substitutions had no affect on DNA binding. D17E, G36A, and H69Y substitutions also resulted in higher levels of the corresponding HetR protein than of the wild-type protein when each was expressed from an inducible promoter in a hetR deletion strain, suggesting an effect on HetR protein turnover. Surprisingly, C48A and S152A substitutions, which were previously reported to result in a Het- phenotype, were found to have no effect on heterocyst differentiation or patterning when the corresponding mutations were introduced into an otherwise wild-type genetic background in Anabaena sp. strain PCC 7120. The clustering of mutations that satisfied the positive selection near the amino terminus suggests an important role for this part of the protein in HetR function.  相似文献   

8.
Induction of radioresistance by a nitric oxide-mediated bystander effect   总被引:7,自引:0,他引:7  
To elucidate whether nitric oxide secreted from irradiated cells affects cellular radiosensitivity, we examined the accumulation of inducible nitric oxide synthase, TP53 and HSP72, the concentration of nitrite in the medium of cells after X irradiation, and cellular radiosensitivity using two human glioblastoma cell lines, A-172, which has a wild-type TP53 gene, and a transfectant of A-172 cells, A-172/mp53, bearing a mutated TP53 gene. Accumulation of inducible nitric oxide synthase was caused by X irradiation of the mutant TP53 cells but not of the wild-type TP53 cells. Accumulation of TP53 and HSP72 in the wild-type TP53 cells was observed by cocultivation with irradiated mutant TP53 cells, and the accumulation was abolished by the addition of an inhibitor for inducible nitric oxide synthase, aminoguanidine, to the medium. Likewise, accumulation of these proteins was observed in the wild-type TP53 cells after exposure to conditioned medium from irradiated mutant TP53 cells, and the accumulation was abolished by the addition of a specific nitric oxide scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, to the medium. The radiosensitivity of wild-type TP53 cells was reduced when the cells were cultured in conditioned medium from irradiated mutant TP53 cells compared to conventional fresh growth medium. Collectively, these findings indicate the potential importance of an intercellular signal transduction pathway initiated by nitric oxide in the cellular response to ionizing radiation.  相似文献   

9.
The role of calmodulin (CaM) in apoptosis induced by gp160 of human immunodeficiency virus type 1 was investigated with cells undergoing single-cell killing. These cells were found to express, under the control of an inducible promoter, wild-type gp160 or mutant gp160 devoid of various lengths of the carboxyl terminus. Immunoprecipitation accompanied by immunoblotting revealed binding of CaM to wild-type gp160 but not to mutant gp160 bearing a carboxyl terminus with a deletion spanning more than five amino acid residues. A significant coenzyme activity was detected in the CaM bound to gp160 even in the presence of a Ca2+ chelater, EGTA. The cells forming this gp160-CaM complex exhibited an elevated intracellular Ca2+ level followed by DNA fragmentation, which is a hallmark of apoptosis, and finally cell killing, while the cells not forming this complex did not show any significant elevation in Ca2+ level or DNA fragmentation. These results thus indicated that CaM plays a key role in gp160-induced apoptosis.  相似文献   

10.
The Arabidopsis genome has six families of dynamin-related proteins. One of these families includes DRP2A and DRP2B. The domain structures of proteins of this family are most similar to those of the animal endocytosis protein, dynamin. In this study, the signals of GFP-tagged DRP2B were strongly detected in the cell plate of Arabidopsis root tip cells and tobacco cultured cells. Time-lapse observations of these signals during cytokinesis in tobacco cultured cells suggested that DRP2B mainly localized to the newly formed part of the cell plate, and that the localization dynamics of DRP2B was quite similar to that of DRP1A, which is an Arabidopsis dynamin-related protein that is closely related to soybean phragmoplastin. These results indicate that Arabidopsis dynamin-related proteins, DRP1A and DRP2B, from two different families, participate in membrane remodeling at a similar place in the cell plate.  相似文献   

11.
In a cloned copy of comG open reading frame 3 (ORF3), an in-frame deletion was generated by site-directed in vitro mutagenesis, removing the coding sequence for 15 amino acids from the central portion of this pilin-related protein. The mutagenized ORF3 was incorporated into the Bacillus subtilis chromosome, replacing the wild-type ORF3. The presence of the deleted ORF3 in the chromosome, as confirmed by Southern analysis, was associated with the complete loss of competence by the mutant strain. The ability of the mutant cells to bind exogenous radiolabeled DNA was reduced to the level of nonspecific binding of DNA by noncompetent cells. The chromosomal ORF3 mutation was partially complemented in trans by a plasmid-encoded wild-type ORF3 copy under PSPAC control upon induction of the PSPAC promoter. Using antiserum raised against a synthetic 14-mer oligopeptide deduced from the ORF3 sequence, an immunoreactive band of approximately the expected molecular size was obtained in Western blot (immunoblot) experiments with extracts of cells containing the plasmid-encoded inducible gene. A signal was also detected when cells harboring the chromosomal wild-type or mutant ORF3 in single copy were grown in competence medium. This signal was detected only in the light-buoyant-density (competent) cell fraction and only after the transition from the exponential to the stationary growth phase. In cell fractionation experiments with competent cell extracts, the immunoreactive protein was found in both the NaOH-insoluble and -soluble membrane fractions and was sensitive to proteinase K treatment of either protoplasts or whole cells.  相似文献   

12.
We have characterized 4 of the 16 members of the family of dynamin-related proteins (DRP) in Arabidopsis. Three members, DRP1A (previously referred as ADL1), DRP1C and DRP1E, belong to the largest group of phragmoplastin-like proteins. DRP2A (ADL6) is one of the two members that contain a pleckstrin homology (PH) domain and a proline-rich (PR) motif, characteristics of animal dynamins. All four proteins interacted in yeast two-hybrid assays with phragmoplastin, and showed different patterns of localization at the forming cell plate during cytokinesis. GFP-tagged DRP1A and DRP1C proteins were found to be associated with the cytoskeleton in G1 phase of the cell cycle. The distribution pattern of DRP1A was sensitive to propyzamid and insensitive to cytochalasin D, suggesting that DRP1A is associated with microtubules and not actin filaments. The association of DRP1A with microtubules was confirmed in vitro by spin-down assays. A GTPase-defective phragmoplastin acted as a dominant negative mutant, reduced transport of vesicles to the cell plate and formed dense tubule-like structures in the cell plate. We propose that DRP1 proteins may provide an anchor for Golgi-derived vesicles to attach to microtubules, which in turn direct the vesicles to the forming cell plate during cytokinesis. Whereas the DRP1 subfamily members are involved in tubulization of membranes, DRP2 may be involved in endocytosis and membrane recycling via clathrin-coated vesicles.  相似文献   

13.
A pSV2gpt-transformed Chinese hamster ovary (CHO) cell line has been used to study mutation at the molecular level. This cell line, designated AS52, was constructed from a hypoxanthine-guanine phosphoribosyl transferase (HPRT)-deficient CHO cell line, and has been previously shown to contain a single, functional copy of the E. coli xanthine-guanine phosphoribosyl transferase (XPRT) gene (gpt) stably integrated into the Chinese hamster genome. In this study, conditions for its use in the study of mammalian cell mutagenesis have been stringently defined. The spontaneous mutation rate (2 X 10(-6)/cell division) and phenotypic expression time (7 days) of the gpt locus compare favorably with those of the hprt locus in wild-type CHO-K1-BH4 cells. While both cell lines exhibit similar cytotoxic responses to ethyl methanesulfonate (EMSO and ICR 191, significant differences in mutation induction were observed. Ratios of XPRT to HPRT mutants induced per unit dose of EMS and ICR 191 are 0.70 and 1.6, respectively. Southern blot hybridization analyses revealed that most XPRT mutant cell lines which arose following treatment with EMS (20/22) or ICR 191 (20/24) exhibited no alterations of the gpt locus detectable by this technique. Similar observations were made for the hprt locus in EMS-(21/21) and ICR 191-induced (22/22) HPRT mutants. In contrast, most spontaneous gpt mutants (14/23) contained deletions, while most spontaneous hprt mutants (18/23) exhibited no detectable alterations. Results of this study indicate that the AS52 cell line promises to be useful for future study of mutation in mammalian cells at the DNA sequence level.  相似文献   

14.
The DNA methylation state of the H19/Igf2 imprinting control region (ICR) is differentially set during gametogenesis. To identify factors responsible for the paternally specific DNA methylation of the ICR, germ line and somatic extracts were screened for proteins that bind to the ICR in a germ line-specific manner. A specific DNA binding activity that was restricted to the male germ line and enriched in neonatal testis was identified. Its three binding sites within the ICR are very similar to the consensus sequence for nuclear receptor extended half sites. To determine if these binding sites are required for establishment of the paternal epigenetic state, a mouse strain in which the three sites were mutated was generated. The mutated ICR was able to establish a male-specific epigenetic state in sperm that was indistinguishable from that established by the wild-type ICR, indicating that these sequences are either redundant or have no function. An analysis of the methylated state of the mutant ICR in the soma revealed no differences from the wild-type ICR but did uncover in both mutant and wild-type chromosomes a significant relaxation in the stringency of the methylated state of the paternal allele and the unmethylated state of the maternal allele in neonatal and adult tissues.  相似文献   

15.
The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage.  相似文献   

16.
Campylobacter jejuni is a microaerophilic bacterium that causes diarrhea in humans. The first step in establishing an infection is adherence to a host cell, which involves two major cell-binding proteins, Peb1A (CBF1) and Peb4 (CBF2). Because the functional role of Peb4 on the cell adhesion remains unclear compared with that of Peb1A, a C. jejuni peb4 deletion mutant was constructed and cell adherence and ability to colonize mouse intestine were studied. The result showed that adherence of the peb4 mutant strain to INT407 cells was 1-2% that of the wild-type strain. Mouse challenge experiments showed a reduced level and duration of intestinal colonization by the mutant compared with the wild-type strain. In addition, fewer peb4 mutant cells than wild-type cells responded to stress by forming a biofilm. Proteomic analysis revealed that the expression levels of proteins involved in various adhesion, transport, and motility functions, which are required for biofilm formation by the pathogen, were lower in the peb4 mutant than in the wild-type strain. A Peb4 homolog has prolyl cis/trans-isomerase activity, suggesting that the loss of this activity in the mutant strain may be responsible for the repression of these proteins.  相似文献   

17.
ROP/RAC GTPases are master regulators of cell polarity in plants, implicated in the regulation of diverse signaling cascades including cytoskeleton organization, vesicle trafficking, and Ca(2+) gradients [1-8]. The involvement of ROPs in differentiation processes is yet unknown. Here we show the identification of a novel ROP/RAC effector, designated interactor of constitutive active ROPs 1 (ICR1), that interacts with GTP-bound ROPs. ICR1 knockdown or silencing leads to cell deformation and loss of root stem-cell population. Ectopic expression of ICR1 phenocopies activated ROPs, inducing cell deformation of leaf-epidermis-pavement and root-hair cells [3, 5, 6, 9]. ICR1 is comprised of coiled-coil domains and forms complexes with itself and the exocyst vesicle-tethering complex subunit SEC3 [10-13]. The ICR1-SEC3 complexes can interact with ROPs in vivo. Plants overexpressing a ROP- and SEC3-noninteracting ICR1 mutant have a wild-type phenotype. Taken together, our results show that ICR1 is a scaffold-mediating formation of protein complexes that are required for cell polarity, linking ROP/RAC GTPases with vesicle trafficking and differentiation.  相似文献   

18.
Two similar Arabidopsis dynamin-related proteins, DRP3A and DRP3B, are thought to be key factors in both mitochondrial and peroxisomal fission. However, the functional and genetic relationships between DRP3A and DRP3B have not been fully investigated. In a yeast two-hybrid assay, DRP3A and DRP3B interacted with themselves and with each other. DRP3A and DRP3B localized to mitochondria and peroxisomes, and co-localized with each other in leaf epidermal cells. In two T-DNA insertion mutants, drp3a and drp3b , the mitochondria are a little longer and fewer in number than those in the wild-type cells. In the double mutant, drp3a/drp3b , mitochondria are connected to each other, resulting in massive elongation. Overexpression of either DRP3A or DRP3B in drp3a/drp3b restored the particle shape of mitochondria, suggesting that DRP3A and DRP3B are functionally redundant in mitochondrial fission. In the case of peroxisomal fission, DRP3A and DRP3B appear to have different functions: peroxisomes in drp3a were larger and fewer in number than those in the wild type, whereas peroxisomes in drp3b were as large and as numerous as those in the wild type, and peroxisomes in drp3a/drp3b were as large and as numerous as those in drp3a . Although overexpression of DRP3A in drp3a/drp3b restored the shape and number of peroxisomes, overexpression of DRP3B did not restore the phenotypes, and often caused elongation instead. These results suggest that DRP3B and DRP3A have redundant molecular functions in mitochondrial fission, whereas DRP3B has a minor role in peroxisomal fission that is distinct from that of DRP3A.  相似文献   

19.
The uvrD252 mutation leads to increased UV sensitivity, diminished dimer excision and host cell reactivation capacity, and an increase in the average patch size after repair replication. A recA56 uvrD252 double mutant was far more resistant to UV than was a recA56 uvrB5 double mutant. Its host cell reactivation capacity was identical to that of uvrD252 single mutant and was far greater than that of the uvrB5 single mutant. The strain showed no Weigle reactivation. From these results, we concluded that the double mutant has no inducible DNA repair (including long-patch excision repair) but retains dimer excision capabilities comparable to the uvrD252 single mutant. It appears, therefore, that the long patches detected in the uvrD mutant were not identical to the recA-dependent patches seen in wild-type cells.  相似文献   

20.
The p53 null HL-60 cell line was transfected with plasmids coding for either the wild-type p53 or mutant p53 gene. The stable expression of wild-type p53 resulted in a significant increase in sensitivity to the topoisomerase II poisons etoposide and doxorubicin, but not to the topoisomerase II inhibitors razoxane and ADR-529. HL-60 cells expressing wild-type p53 demonstrated 8- to 10-fold more VP-16 induced DNA breaks by the alkaline elution assay. The effect of inducible expression of wild-type p53 was also studied in the p53 null erythroblastoid cell line K562 and in the human squamous carcinoma cell line SqCC. The inducible expression of wild-type p53 in the K562 cell line resulted in a 3-fold increase in sensitivity to VP-16. The quantity of topoisomerase IIalpha was not altered by the transfection as determined by immunoblotting, while the amount of the beta isoform was increased 2.5-fold in HL-60 cells. The topo II catalytic activity present in nuclear extracts was measured as the decatenation of kinetoplast DNA, and found to be unaltered by p53 expression. Immunostaining for topoisomerase IIalpha was substantially diminished in both stable and inducible wild-type p53 expressing cells when three different antibodies were used (two polyclonal and one monoclonal). However, the addition of VP-16 resulted in a rapid appearance of nuclear fluorescence for topoisomerase IIalpha. No changes in topoisomerase IIbeta immunostaining were observed. These results suggest that an epitope for topoisomerase IIalpha is concealed in cells expressing wild-type p53 and that a complex between topoisomerase IIalpha and p53 may be disrupted by the addition of antitumor drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号