首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fission yeast Schizosaccharomyces pombe has recently been established as an experimental model for the study of antisense RNA-mediated gene suppression. To validate the use of S. pombe as a host for identifying antisense genes for use in human cells, it was important to determine if sequences identified in yeast were as equally effective in a human cell line. This report describes the comparison of a range of lacZ antisense RNAs targeting a lacZ gene expressed in HeLa cells in a comparable manner to its expression in S. pombe cells in earlier studies. In both cell types, the same lacZ gene target was expressed using the same promoter. Antisense genes were expressed episomally in both experimental systems and the levels of suppression determined. In all cases, the relative level of suppression of the lacZ gene was similar in the mammalian and yeast cells. This result indicates that, at least for lacZ antisense RNA, results obtained in fission yeast are predictive of their behavior in the mammalian cellular environment.  相似文献   

2.
3.
4.
5.
非编码RNA与基因表达调控   总被引:1,自引:0,他引:1  
近年来,随着对基因组的深入研究,发现真核生物中存在许多形态和功能各异的非编码RNA分子,这类RNA分子并不表达蛋白质,但它们在基因转录水平、转录后水平及翻译水平起了重要的调控作用。具有调控作用的RNA分子种类非常丰富,如长链非编码RNA(long non-coding RNA,lncRNA)、miRNA、PIWI相互作用RNA(PIWI-interacting RNA,piRNA)、内源性小干扰RNA(endogenous small interfering RNA,endo-siRNA)、竞争性内源RNA(competitive endogenous RNA,ceRNA)等,它们使基因表达过程更为丰富、严谨和有序。本文综述几类典型的非编码RNA对基因表达的调节作用,以助于理解细胞中RNA分子调节网络的功能和机制。  相似文献   

6.
7.
RNA tools, namely, antisense RNA, double-stranded RNA (dsRNA), and delta ribozyme, were comparatively analyzed for the development of effective RNA-based gene modulators. The gene encoding uracil phosphoribosyltransferase (UPRT) of Toxoplasma gondii was used as a target and a negative selectable marker. Using plasmid transformation and drug selection assays, we obtained T. gondii transformants resistant to 5-fluoro-2'-deoxyuridine (FDUR), the cytotoxic prodrug and substrate of UPRT, when the plasmids expressing dsRNA and active delta ribozyme were used. No resistant transformants were detected when the plasmids carrying the antisense RNA, the inactive delta ribozyme, or the chloramphenicol acetyltransferase (CAT) genes were used. Parasites generated using the plasmids expressing dsRNA and the delta ribozyme become resistant to FDUR with an LD50 of 50 +/- 5 microM and 25 +/- 8 microM, respectively. These values are approximately 25-fold and 12-fold higher than that of the RH parental parasite strain, indicating that UPRT activity of the transformed parasites was drastically inhibited. Using Northern and Southern blot analysis, we demonstrated that dsRNA and the delta ribozyme interrupt the expression of UPRT. These two RNA tools should, thus, be very useful for the study of gene expression.  相似文献   

8.
9.
The sgp gene from Streptococcus mutans has been previously isolated, characterized, and demonstrated to encode a G-protein. In order to investigate the function of this gene, a novel antisense RNA strategy was developed. Expression of sgp antisense RNA in Escherichia coli led to transient inhibition of growth. In addition, sgp antisense RNA expression in S. mutans resulted in decreased growth under environmental stress conditions (44°C, acidic pH, and high osmolarity). Therefore, these results suggest that the sgp gene plays a role in modulating the stress responses of S. mutans. This approach could be applicable for investigating the function of essential genes in other organisms for which mutants are not available.  相似文献   

10.
11.
We describe two types of artificial gene-regulation systems responding to cyclic AMP-dependent protein kinase (PKA) or caspase-3. These molecular systems use newly synthesized cationic polymers, PAK and PAC. The PAK polymer includes substrate oligopeptide for PKA, ARRASLG, as receptor of PKA signal, while the PAC polymer possesses oligopeptide that is comprised of a substrate sequence of caspase-3, DEVD, and a cationic oligolysine, KKKKKK. These polymers formed stable complexes with DNA to totally suppress the gene expression. However, PKA or caspase-3 signal disintegrates the PAK-DNA or the PAC-DNA complex, respectively. This liberates the DNA and activated the gene expression. These systems are the first concept of an intracellular signal-responsive gene-regulation system using artificial polymer. We expect that these systems can be applied to the novel highly cell specific gene delivery strategy that is involved in our previously proposed new drug delivery concept, the drug delivery system based on responses to cellular signals.  相似文献   

12.
We compared the levels of growth hormone (GH) mRNA in the pituitary, plasma GH concentration, and altered phenotype in rats heterozygous and homozygous for an antisense RNA transgene targeted to the rat GH gene, with those in nontransgenic rats. We initially investigated whether the transgene promoter, which is connected to four copies of a thyroid hormone response element (TRE) that increases promoter activity, affected in vivo transgene expression in the pituitary of the transgenic rats. Plasma GH concentration correlated negatively with T, injection in surgically thyroidectomized heterozygous transgenic rats. There was a reduction of about ?35–40% in GH mRNA levels in the pituitary of homozygous animals compared with those in non-transgenic rats. Plasma GH concentration was significantly ?25–32 and ?29–41% lower in heterozygous and homozygous transgenic rats, respectively, compared with that in nontransgenic animals. Furthermore, the growth rates in homozygous transgenic rats were reduced by ?72–81 and ?51–70% compared with those of their heterozygous and nontransgenic littermates, respectively. The results of these studies suggested that the biological effect of GH in vivo is modulated dose-dependently by the antisense RNA transgene. The rat GH gene can therefore be targeted by antisense RNA produced from a transgene, as reflected in the protein and RNA levels. © 1995 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
16.
Several putative peptide-processing endoproteases have been identified by homology to the yeast Kex2 endoprotease, including furin, PC2, and PC1. However, the question is still open as to which might be involved in peptide posttranslational processing. To enable detailed comparisons of physiological changes in peptide processing with biochemical and molecular biological studies, we cloned rat pituitary cDNAs for PC1 and PC2. The amino acid sequence homologies among rat, human, and mouse PC1, PC2, and furin are consistent with each being a highly conserved but distinct member of a larger family of mammalian subtilisin-like proteases. PC1 and PC2 mRNAs show a restricted distribution among rat tissues and cultured cell lines, consistent with a role in tissue-specific peptide processing; the occurrence of furin mRNA among these tissues and cell lines is much more widespread, being high in many nonneuroendocrine tissues. In the neurointermediate pituitary, PC1 and PC2 mRNAs are strikingly regulated in response to dopaminergic agents, in parallel with mRNAs for POMC, peptidylglycine alpha-amidating monooxygenase, and carboxypeptidase-H. In AtT-20 cells, PC1 mRNA is coregulated with POMC and peptidylglycine alpha-amidating monooxygenase mRNAs in response to CRH and glucocorticoids. When the endogenous PC1 mRNA level in AtT-20 cells is significantly and specifically decreased by stable expression of antisense RNA to PC1, biosynthetic labeling of newly synthesized POMC-derived peptides shows a substantial blockade of normal POMC processing. These data are consistent with a role for PC1 protein in endoproteolysis, either as a processing endoprotease or as the activator of the actual processing endoprotease(s).  相似文献   

17.
18.
反义RNA在基因治疗中的应用   总被引:1,自引:0,他引:1  
由于反义RNA作为封闭基因表达的有效手段具有特异性强、安全性高、操作简单、靶基因范围广等特点,已被广泛应用于基因治疗肿瘤和病毒相关疾病的研究,反义RNA治疗肿瘤可以通过抑制癌基因的表达、封闭融合癌基因、抑制肿瘤细胞的耐药性、调节细胞因子的表达量等途径;反义RNA治疗病毒相关疾病多集中在艾滋病上,其手段主要是反义封闭TAR。反义RNA作为基因治疗的新途径具有良好的前景,但在设计上和应用上还存在一些急待解决的问题。  相似文献   

19.
Incorporation of nucleosides with novel base-constraining oxetane (OXE) modifications [oxetane, 1-(1',3'-O-anhydro-beta-d-psicofuranosyl nucleosides)] into antisense (AS) oligodeoxyribonucleotides (ODNs) should greatly improve the gene silencing efficiency of these molecules. This is because OXE modified bases provide nuclease protection to the natural backbone ODNs, can impart T(m) values similar to those predicted for RNA-RNA hybrids, and not only permit but also accelerate RNase H mediated catalytic activity. We tested this assumption in living cells by directly comparing the ability of OXE and phosphorothioate (PS) ODNs to target c-myb gene expression. The ODNs were targeted to two different sites within the c-myb mRNA. One site was chosen arbitrarily. The other was a 'rational' choice based on predicted hybridization accessibility after physical mapping with self-quenching reporter molecules (SQRM). The Myb mRNA and protein levels were equally diminished by OXE and PS ODNs, but the latter were delivered to cells with approximately six times greater efficiency, suggesting that OXE modified ODNs were more potent on a molar basis. The rationally targeted molecules demonstrated greater silencing efficiency than those directed to an arbitrarily chosen mRNA sequence. We conclude that rationally targeted, OXE modified ODNs, can function efficiently as gene silencing agents, and hypothesize that they will prove useful for therapeutic purposes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号