首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Appearance quality of the rice grain represents a major problem of rice production in many rice-producing areas of the world, especially in hybrid rice production in China. In this study, we conducted a molecular marker-based genetic analysis of the traits that are determinants of the appearance quality of rice grains, including traits specifying grain shape and endosperm opacity. The materials used in the analysis included an F2:3 population and an F10 recombinant inbred line population from a cross between the parents of Shanyou 63, the most widely grown rice hybrid in China. Molecular marker-based QTL (quantitative trait locus) analyses revealed that grain length and grain width were each controlled by a major QTL accounting for a very large proportion of the genetic variation, plus one or two minor QTLs each explaining a small proportion of the genetic variation. The major QTLs can be detected in both the F2:3 and recombinant inbred line population using both paddy rice and brown rice, whereas the minor QTLs were detected only occasionally. The QTL located in the interval of RG393-C1087 on chromosome 3 is the major locus for grain length, and the one in the interval RG360-C734a on chromosome 5 plays a major role in determining grain width. Similarly, white belly, which largely determines the opacity of the endosperm, is almost entirely controlled by a major locus on chromosome 5, located in the same genomic region as the major QTL for grain width. The implications of the results with respect to hybrid rice improvement were discussed. Received: 20 February 2000 / Accepted: 21 March 2000  相似文献   

2.
Milling properties, protein content, and flour color are important factors in rice. A marker-based genetic analysis of these traits was carried out in this study using recombinant inbred lines (RILs) derived from an elite hybrid cross ’Shanyou 63’, the most-widely grown rice hybrid in production in China. Correlation analysis shows that the traits were inter-correlated, though the coefficients were generally small. Quantitative trait locus (QTL) analysis with both interval mapping (IM) and composite interval mapping (CIM) revealed that the milling properties were controlled by the same few loci that are responsible for grain shape. The QTL located in the interval of RM42-C734b was the major locus for brown rice yield, and the QTL located in the interval of C1087-RZ403 was the major locus for head rice yield. These two QTLs are the loci for grain width and length, respectively. The Wx gene plays a major role in determining protein content and flour color, and is modified by several QTLs with minor effect. The implications of the results in rice breeding were discussed. Received: 15 September 2000 / Accepted: 31 March 2001  相似文献   

3.
Apparent amylose content (AAC), gel consistency (GC), and gelatinization temperature (GT) are recognized as the most important determinants of rice eating and cooking qualities. The contributions of major starch-synthesis genes to these three traits have been investigated in the three consecutive experiments. In an initial QTL mapping with 130 doubled haploid (DH) lines, derived from an inter-subspecific cross of ‘Nanjing11’/‘Balilla’, the major QTLs responsible for AAC, GC, and GT coincided with the Wx (granule-bound starch synthase gene), Wx, and Sss IIa (soluble starch synthase gene) loci, respectively. In the second experiment, contributions of the major starch-synthesis genes to AAC, GC, and GT variations were estimated by using a multiple linear regression analysis. As shown, the Wx locus was a principal determinant for both AAC and GC, and could account for 58.5% and 38.9% of the phenotypic variations, respectively; while the Sss IIa locus was associated with GT, and could explain 25.5% of the observed variation. Eventually, a F2 population consisting of 501 individuals, derived from an inter-subspecific cross of the two sticky rice varieties ‘Suyunuo’ and ‘Yangfunuo 4’, was examined with gene-tagged markers. In the absence of the Wx gene, none of the starch-synthesis genes investigated could dominate the GC variation, however, the Sss IIa locus could also explain 25.1% of the GT variation. In summary, the Wx locus dominates the AAC variation, and meanwhile plays a major role in the GC variation. The Sss IIa locus is a major factor in explaining the GT variation. Apart from the major genes, other genetic factors may also contribute to the GC/GT variations.  相似文献   

4.
Although F2s are the most informative populations for genetic analysis, it has been difficult to use F2 populations directly for QTL analysis because it is usually difficult to assess the reliability of the data, due to an inability to estimate the experimental errors. In this study, we performed a QTL analysis for yield and yield-component traits of an F2 population based on data from replicated field trials over 2 years using vegetative shoots of ratooned plants, making use of the ratooning habit of rice. The objective of this study was to explore the possibility of conducting QTL analyses directly based on an F2 population by means of ratooning plants. The experimental population was from a cross between ’Zhenshan 97’ and ’Minghui 63’, the parents of ’Shanyou 63’, an elite rice hybrid widely grown in China. A genetic linkage map containing 151 molecular markers was constructed for QTL mapping. A total of 20 distinct QTLs were detected; eight of these were detected in both years and remaining 12 in only 1 year. Compared with the results of our previous analysis of the F2:3 families from the same cross, it was shown that most of the QTLs detected in the ratooned F2 population were also detected in the F2:3 population. However, the estimates of both additive and dominant types of genetic effects for many of the QTLs based on F2 ratoons were substantially larger than those based on F2:3 families. The results indicate that vegetatively ratooned F2 populations may have considerable utility in the mapping of QTLs, especially if dominant types of gene actions are of concern, although there were certain technical limitations in making use of such populations in the experiments. Received: 11 November 1999 / Accepted: 24 November 1999  相似文献   

5.
 Domesticated rice differs from the wild progenitor in large arrays of morphological and physiological traits. The present study was conducted to identify the genetic factors controlling the differences between cultivated rice and its wild progenitor, with the intention to assess the genetic basis of the changes associated with the processes of rice domestication. A total of 19 traits, including seven qualitative and 12 quantitative traits, that are related to domestication were scored in an F2 population from a cross between a variety of the Asian cultivated rice (Oryza sativa) and an accession of the common wild rice (O. rufipogon). Loci controlling the inheritance of these traits were determined by making use of a molecular linkage map consisting of 348 molecular-marker loci (313 RFLPs, 12 SSRs and 23 AFLPs) based on this F2 population. All seven qualitative traits were each controlled by a single Mendelian locus. Analysis of the 12 quantitative traits resolved a total of 44 putative QTLs with an average of 3.7 QTLs per trait. The amount of variation explained by individual QTLs ranged from a low of 6.9% to a high of 59.8%, and many of the QTLs accounted for more than 20% of the variation. Thus, genes of both major and minor effect were involved in the differences between wild and cultivated rice. The results also showed that most of the genetic factors (qualitative or QTLs) controlling the domestication-related traits were concentrated in a few chromosomal blocks. Such a clustered distribution of the genes may provide explanations for the genetic basis of the “domestication syndrome” observed in evolutionary studies and also for the “linkage drag” that occurs in many breeding programs. The information on the genetic basis of some desirable traits possessed by the wild parent may also be useful for facilitating the utilization of these traits in rice-breeding programs. Received: 1 June 1998 / Accepted: 28 July 1998  相似文献   

6.
协优57是一个产量高和适应性强的杂交中籼组合,但由于其父母本直链淀粉含量(AC)高,导致杂交稻米的AC较高、蒸煮食味品质较差。先前利用PCR-AccⅠ分子标记辅助选择对协优57的亲本057[恢复系,记作057(GG)]和协青早A[不育系,记作协A(GG)]的W x基因进行改良。利用改良前、后的各亲本分别配组,分析不同组合的AC、食味品质和颗粒性淀粉结合酶(GBSS)活性。结果表明,改良单亲的GT型组合协A(GG)×057(TT)、协A(TT)×057(GG)杂交稻米的AC由原组合协A(GG)×057(GG)的28%分别降到19.9%和19.3%,但均一性较差。改良双亲的TT纯合型组合协A(TT)×057(TT)的杂交稻米,不仅AC降到中等偏低水平(13.1%),而且AC的均一性也有了很大的提高,蒸煮食味品质明显改善。GBSS活性分析表明:三种W x基因型的GBSS活性总体表现为GG〉GT〉TT。  相似文献   

7.
 The chromosomal position of Starch Branching Enzyme III (SBEIII) was determined via linkage to RFLP markers on an existing molecular map of rice (Oryza sativa L.). A cDNA of 890 bp was generated using specific PCR primers designed from available SBEIII sequence data and used as a probe in Southern analysis. The SBEIII cDNA hybridized to multiple restriction fragments, but these fragments mapped to a single locus on rice chromosome 2, flanked by CDO718 and RG157. The detection of a multiple-copy hybridization pattern suggested the possibility of a tandemly duplicated gene at this locus. The map location of orthologous SBE genes in maize, wheat, and oat were predicted based on previously published genetic studies and comparative maps of the grass family. Received : 5 August 1996 / Accepted : 13 September 1996  相似文献   

8.
Photoperiod-sensitive genetic male-sterile (PSGMS) rice, with its male fertility regulated by photoperiod length, is very useful for hybrid rice development. However, breeding for new PSGMS lines has faced two major difficulties – the stability of male sterility and the reversibility of male fertility. In this study we assessed the genetic bases of stability of sterility and fertility reversibility using a molecular marker-based approach. A cross was made between two newly bred PSGMS lines: Peiai 64S, which has a stable sterility but is difficult to reverse to fertility, and 8902S, which has a unstable sterility but is easy to reverse to fertility. The fertility of the parents and of the F1 and F2 populations was repeatedly examined under 11 different long-day and short-day conditions. The genetic effects were assayed by interval mapping and two-way analyses of variance using the F2 data of 128 polymorphic loci representing all the 12 rice chromosomes. The analyses resolved a number of single-locus QTLs and two-locus interactions under both long-day and short day conditions. The interactions involved a large number of loci, most of which were not detectable on a single-locus basis. The results showed that the genetic bases of both stability of sterility and reversibility of fertility are the joint effects of the additive effects of the QTLs and additive-by-additive components of two-locus interactions. The implications of these findings in hybrid rice development are also discussed. Received: 11 January 1999 / Accepted: 19 January 1999  相似文献   

9.
 Genes cloned from diverse plants for resistance to different pathogens have sequence similarities in domains presumably involved in pathogen recognition and signal transduction in triggering the defense response. Primers based on the conserved regions of resistance genes often amplify multiple fragments that may not be separable in an agarose gel. We used denaturing polyacrylamide-gel electrophoresis to detect PCR products of plant genomic DNA amplified with primers based on conserved regions of resistance genes. Depending upon the primer pairs used, 30–130 bands were detected in wheat, rice, and barley. As high as 47%, 40%, and 27% of the polymorphic bands were detected in rice, barley, and wheat, respectively, and as high as 12.5% of the polymorphic bands were detected by certain primers in progeny from a cross of the wheat cultivars ‘Stephens’ and ‘Michigan Amber’. Using F6 recombinant inbred lines from the ‘Stephens’בMichigan Amber’ cross, we demonstrated that polymorphic bands amplified with primers based on leucine-rich repeats, nucleotide-binding sites and protein kinase genes, were inherited as single loci. Linkages between molecular markers and stripe rust resistance genes were detected. This technique provides a new way to develop molecular markers for assessing the genetic diversity of germplasm based upon potential candidate resistance genes in diverse species. Received : 5 September 1997 / Accepted : 6 November 1997  相似文献   

10.
 We used a mapping population of 131 doubled-haploid lines, produced from a cross between an improved indica rice variety (IR64) and a traditional japonica variety (Azucena), to detect quantitative trait loci (QTLs) for resistance to the brown planthopper (BPH), Nilaparvata lugens. We evaluated the parents and mapping population with six tests that measure varying combinations of the three basic mechanisms of insect host plant resistance, i.e., antixenosis, antibiosis, and tolerance. To factor-out the effect of the major resistance gene Bph1 from IR64, the screening was done with two BPH populations from Luzon Island, The Philippines, that are almost completely adapted to this gene. A total of seven QTLs associated with resistance were identified, located on 6 of the 12 rice chromosomes. Individual QTLs accounted for between 5.1 and 16.6% of the phenotypic variance. Two QTLs were predominantly associated with a single resistance mechanism: one with antixenosis and one with tolerance. Most of the QTLs were derived from IR64, which has been shown to have a relatively durable level of moderate resistance under field conditions. The results of this study should be useful in transferring this resistance to additional rice varieties. Received: 10 May 1998 / Accepted: 4 June 1998  相似文献   

11.
 The recessive gene, xa13, confers resistance to Philippine race 6 (PXO99) of the bacterial blight pathogen Xanthomonas oryzae pv oryzae. Fine genetic mapping and physical mapping were conducted as initial steps in an effort to isolate the gene. Using nine selected DNA markers and two F2 populations of 132 and 230 plants, xa13 was fine-mapped to a genomic region <4 cM on the long arm of rice chromosome 8, flanked by two RFLP markers, RG136 and R2027. Four DNA markers, RG136, R2027, S14003, and G1149, in the target region were used to identify bacterial artificial chromosome (BAC) clones potentially harboring the xa13 locus from a rice BAC library. A total of 11 BACs were identified, forming four separate contigs including a single-clone contig, 29I3, associated with the RG136 STS marker, the S14003 contig consisting of four clones (44F8, 41O2, 12A16, and 12F20), the G1149 contig with two clones, 23D11 and 21H18, and the R2027 contig consisting of four overlapping clones, 42C23, 30B5, 6B7 and 21H14. Genetic mapping indicated that the xa13 locus was contained in the R2027 contig. Chromosomal walking on the R2027 contig resulted in two more clones, 33C7 and 14L3. DNA fingerprinting showed that the six clones of the R2027 contig were overlapping. Clone 44F8 hybridized with a single fragment from the clone 14L3, integrating the R2027 and S14003 contigs into a single contig consisting of ten BAC clones with a total size of approximately 330 kb. The physical presence of the xa13 locus in the contig was determined by mapping the ends of the BAC inserts generated by TAIL-PCR. In an F2 population of 230 plants, the BAC-end markers 42C23R and 6B7F flanked the xa13 locus. The probes 21H14F and 21H14R derived from BAC clone 21H14 were found to flank xa13 at a distance of 0.5 cM on either side, using a second F2 population of 132 plants. Thus, genetic mapping indicated that the contig and the 96-kb clone, 21H14, contained the xa13 locus. Received: 15 August 1998 / Accepted: 29 September 1998  相似文献   

12.
Field resistance is defined as the resistance that allows effective control of a parasite under natural field conditions and is durable when exposed to new races of that parasite. To identify the genes for field resistance to rice blast, quantitative trait loci (QTLs) conferring field resistance to rice blast in Japanese upland rice were detected and mapped using RFLP and SSR markers. QTL analysis was carried out in F4 progeny lines from the cross between Nipponbare (moderately susceptible, lowland) and Owarihatamochi (resistant, upland). Two QTLs were detected on chromosome 4 and one QTL was detected on each of chromosomes 9 and 12. The phenotypic variation explained by each QTL ranged from 7.9 to 45.7% and the four QTLs explained 66.3% of the total phenotypic variation. Backcrossed progeny lines were developed to transfer the QTL with largest effect using the susceptible cultivar Aichiasahi as a recurrent parent. Among 82 F3 lines derived from the backcross, resistance segregated in the expected ratio of resistant 1 : heterozygous 2 : susceptible 1. The average score for blast resistance measured in the field was 4.2 ± 0.67, 7.5 ± 0.51and 8.2 ± 0.66, for resistant, heterozygous and susceptible groups, respectively. The resistance gene, designated pi21, was mapped on chromosome 4 as a single recessive gene between RFLP marker loci G271 and G317 at a distance of 5.0 cM and 8.5 cM, respectively. The relationship to previously reported major genes and QTLs conferring resistance to blasts, and the significance of marker-assisted selection to improve field resistance, are discussed. Received: 8 June 2000 / Accepted: 24 November 2000  相似文献   

13.
Seeds of English and Austrian populations of bearded wheatgrass (Elymus caninus L.) and sea barley (Hordeum marinum Huds.) growing in the vicinity of wheat (Triticum aestivum L.) fields were collected in order to search for evidence of the introgression of wheat traits into these wild relatives. Seeds were sown and plants grown for subsequent analyses using morphological and genetic (isozymes, RAPD and wheat microsatellites) markers. No F1 hybrids were found within the individuals of the two species grown, neither with morphological nor with genetic markers. Also, no evidence of introgression of wheat traits into E. caninus was observed. However, in one individual of H. marinum which had the typical morphology of this species, numerous species-specific DNA markers of wheat were amplified, thereby demonstrating previous hybridization. Consequently, the hybridization between wheat and H. marinum under natural conditions and the introgression of wheat traits into this wild relative seems to be possible. Our results contribute to the risk assessment of transgenic wheat cultivation. Received: 20 September 2000 / Accepted: 17 December 2000  相似文献   

14.
ISSR-PCR has been widely used for genetic distance analysis and DNA fingerprinting but has been less well utilised for mapping purposes. A key limitation lies in the small number of primer designs available to generate useful polymorphisms. In this study, the potential of paired combinations of ISSR primers is evaluated using a test cross mapping population of 168 BC1 individuals between Fragaria vesca f. vesca and a closely related line F. vesca f. semperflorens. Ten ISSR primers and all possible pairwise combinations between them were used to generate markers potentially linked to the locus controlling seasonal flowering in F. vesca. Band profiles of individual primers were found to be highly reproducible for band position and intensity, and only minor variation was noted in band intensity (but not in position) between different constituent mixes of primer-pair combinations. Overall, ISSR primers used in isolation produced 85 markers of which only five were specific to F. vesca. None of these markers were linked to the seasonal flowering locus. In contrast, the primer-pair combina-tions yielded 493 markers, including 14 specific to F. vesca. These markers included two located within 2.2 cM of the seasonality locus. The strengths and limitations of using pairs of ISSR primers in combination for mapping and other genetic analyses are briefly explored. Received: 12 October 2000 / Accepted: 19 January 2001  相似文献   

15.
 A unique set of data recorded on 60 randomly extracted single-seed-descent (F) lines of a highly heterotic cross between two varieties of Nicotiana rustica and their 870 reciprocally produced pairwise crosses, the second-cycle hybrids (SCH), are analysed to investigate the true nature of genetical control in the cross and the results are compared with those in earlier publications. The analysis revealed that epistasis, genotype-by-micro-environmental interaction, maternal effects and linkage are significant for several characters and the additive and non-additive components of variation take large values for all of the traits. Epistasis is predominantly duplicate and not complementary. Dominance is high but partial, all estimates of dominance ratio lying between 0.5 and 0.9. Dominance is predominantly unidirectional for leaf length, leaf width and final height, while for the remaining traits, some genes show ambidirectional dominance, although the incidence of unidirectional dominance is much higher throughout. The direction of dominance is predominantly for the increased score, except for flowering time where alleles conferring earliness are up to five times more frequently dominant. The present study has also confirmed that the F2 and SCHi distributions are very similar and that the former can be used to predict the transgression in the latter with confidence. The reduced range of the SCH i families compared to the recombinant inbreds, further indicated that heterosis among many of the SCHi is due to gene dispersion and there is little evidence for the presence of over-dominance. Received: 8 July 1996 / Accepted: 8 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号