首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructose 2, 6-Bisphosphate in Hypoglycemic Rat Brain   总被引:2,自引:2,他引:0  
Abstract: Fructose 2,6-bisphosphate has been studied during hypoglycemia induced by insulin administration (40 IU/kg). No changes in content of cerebral fructose 2,6-bisphosphate were found in mild hypoglycemia, but the level of this compound was markedly decreased in hypoglycemic coma and recovered after 30 min of glucose administration. To correlate a possible modification of the concentration of the metabolite with selective regional damage occurring during hypoglycemic coma, we have analyzed four cerebral areas (cortex, striatum, cerebellum, and hippocampus). Fructose 2,6-bisphosphate concentrations were similar in the four areas analyzed; severe hypoglycemia decreased levels of the metabolite to the same extent in all the brain areas studied. The decrease in content of fructose 2,6-bisphosphate was not always accompanied by a parallel decrease in ATP levels, a result suggesting that the low levels of the bisphosphorylated metabolite during hypoglycemic coma could be due to the decreased 6-phosphofructo-2-kinase activity, mainly as a consequence of the fall in concentration of its substrate (fructose 6-phosphate). These results suggest that fructose 2,6-bisphosphate could play a permissive role in cerebral tissue, maintaining activation of 6-phosphofructo-l-kinase and glycolysis.  相似文献   

2.
Fructose 2,6-bisphosphate, the most potent activator of 6-phosphofructo-1-kinase, has been demonstrated to mediate the increase of glycolytic flux induced by mitogens human fibroblasts. In the present work the molecular basis of transmembrane control of fructose 2,6-bisphosphate has been investigated. Prostacyclin and isoprenaline, known to activate adenylate cyclase, are able to increase fructose 2,6-bisphosphate levels, indicating that in human fibroblasts cyclic AMP plays a positive role in the control of the metabolite concentration, opposite to that exerted in hepatocytes. Substances known to activate protein kinase C such as phorbol 12-myristate 13-acetate, or to stimulate phosphoinositide turnover such as thrombin and bradykinin are also effective in raising fructose 2,6-bisphosphate. Therefore, we conclude that cyclic AMP and protein kinase C are likely involved in the control of fructose 2,6-bisphosphate levels in human fibroblasts.  相似文献   

3.
The accurate measurement of fructose 2,6-bisphosphate from plants such as wheat is fraught with difficulty. Extraction and assay methods for fructose 2,6-bisphosphate that give near 100% recovery of the metabolite, and a linear response with volume have therefore been developed for extracts prepared from wheat leaves of different ages. Amounts of fructose 2,6-bisphosphate in different regions of leaves generally showed a positive correlation with chlorophyll content. Measurements of sucrose and starch in third leaves harvested at different times of the diurnal cycle demonstrated that sucrose is the major form in which photosynthate is stored in the leaf, but starch can account for up to about 30% of the stored carbohydrate. Virtually all of the carbohydrate accumulated as starch and sucrose during the day was degraded at night. Amounts of fructose 2,6-bisphosphate were generally lower in extracts prepared from leaves harvested in the light than in the dark. Additionally, there was no change in either the amount of fructose 2, 6-bisphosphate or the ratio of sucrose to starch in samples prepared from leaves harvested at different times of the day. These results are broadly consistent with a role for fructose 2,6-bisphosphate in the regulation of sucrose synthesis and the partitioning of carbohydrate between sucrose and starch in wheat leaves.  相似文献   

4.
Fructose 2,6-bisphosphate is physiologically one of the most potent activators of yeast 6-phosphofructo-1-kinase. The glycolytic oscillation observed in cell-free cytoplasmic extracts of the yeast Saccharomyces cerevisiae responds to the addition of fructose 2,6-bisphosphate in micromolar concentrations by showing a pronounced decrease of both the amplitude and the period. The oscillations can be suppressed completely by 10 microM and above of this activator but recovers almost fully (95%) to the unperturbed state after 3 h. Fructose 2,6-bisphosphate shifts the phases of the oscillations by a maximal +/- 60 degrees. Oscillations in concentration of endogenous fructose 2,6-bisphosphate in the extract were also observed. Fructose 2,6-bisphosphate alters the dynamic properties of 6-phosphofructo-1-kinase which are vital for its role as the 'oscillophore'. However, the minute amount (approximately 0.3 microM) of endogenous fructose 2,6-bisphosphate and the phase relationship of its oscillations compared with other metabolites indicate that this activator is not an essential component of the oscillatory mechanism. Further support for this conclusion is the observation of sustained oscillations in both the extracts and a population of intact cells of a mutant strain (YFA) of S. cerevisiae with no detectable fructose 2,6-bisphosphate (less than 5 nM).  相似文献   

5.
Glucagon and dibutyryl cyclic AMP inhibited glucose utilization and lowered fructose 2,6-bisphosphate levels of hepatocytes prepared from fed chickens. Partially purified preparations of chicken liver 6-phosphofructo-1-kinase and fructose 1,6-bisphosphatase were activated and inhibited by fructose 2,6-bisphosphate, respectively. The sensitivities of these enzymes and the changes observed in fructose 2,6-bisphosphate levels are consistent with an important role for this allosteric effector in hormonal regulation of carbohydrate metabolism in chicken liver. In contrast, oleate inhibition of glucose utilization by chicken hepatocytes occurred without change in fructose, 2,6-bisphosphate levels. Likewise, pyruvate inhibition of lactate gluconeogenesis in chicken hepatocytes cannot be explained by changes in fructose 2,6-bisphosphate levels. Exogenous glucose caused a marked increase in fructose 2,6-bisphosphate content of hepatocytes from fasted but not fed birds. Both glucagon and lactate prevented this glucose effect. Fasted chicken hepatocytes responded to lower glucose concentrations than fasted rat hepatocytes, perhaps reflecting the species difference in hexokinase isozymes.  相似文献   

6.
The role of fructose 2,6 bisphosphate in partitioning of photosynthate between sucrose and starch has been studied in spinach (Spinacia oleracea U.S. hybrid 424). Spinach leaf material was pretreated to alter the sucrose content, so that the rate of starch synthesis could be varied. The level of fructose 2,6-bisphosphate and other metabolites was then related to the accumulation of sucrose and the rate of starch synthesis. The results show that fructose 2,6-bisphosphate is involved in a sequence of events which provide a fine control of sucrose synthesis so that more photosynthate is diverted into starch in conditions when sucrose has accumulated to high levels in the leaf tissue. (a) As sucrose levels in the leaf rise, there is an accumulation of triose phosphates and hexose phosphates, implying an inhibition of sucrose phosphate synthase and cytosolic fructose 1,6-bisphosphatase. (b) In these conditions, fructose 2,6-bisphosphate increases. (c) The increased fructose 2,6-bisphosphate can be accounted for by the increased fructose 6-phosphate in the leaf. (d) Fructose 2,6-bisphosphate inhibits the cytosolic fructose 1,6-bisphosphatase so more photosynthate is retained in the chloroplast, and converted to starch.  相似文献   

7.
Fructose 2,6-Bisphosphate Changes in Rat Brain During Ischemia   总被引:2,自引:2,他引:0  
Brain ischemia was produced by bilateral ligation of the common carotid arteries of spontaneously hypertensive rats. The concentrations of fructose 2,6-bisphosphate and other glycolytic intermediates as well as of pyridine and adenine nucleotides were measured in frozen brain samples. In contrast to the decrease reported in hepatocytes under anoxic conditions, the fructose 2,6-bisphosphate content was increased by 20-30% during the early stages of ischemia. Elevation in fructose 1,6-bisphosphate level and lactate formation followed the rise in fructose 2,6-bisphosphate content, a finding suggesting that this compound plays a key role in the compensatory acceleration of glycolysis under ischemic conditions in vivo.  相似文献   

8.
D.W. Meek  H.G. Nimmo   《FEBS letters》1983,160(1-2):105-109
Rat liver fructose 1,6-bisphosphatase can be protected against partial inactivation by N-ethylmaleimide by low concentrations of fructose 2,6-bisphosphate or high concentrations of fructose 1,6-bisphosphate. The partially inactivated enzyme has a much reduced sensitivity to high substrate inhibition and has lost the sigmoid component of the inhibition by fructose 2,6-bisphosphate; this compound is a simple linear competitive inhibitor of the modified enzyme. The results suggest that fructose 2,6-bisphosphate can bind to the enzyme at two distinct sites, the catalytic site and an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit by binding to the allosteric site.  相似文献   

9.
The inhibitory effect of fructose 2,6-biphosphate on fructose 1,6-bisphosphatase was reinvestigated in order to solve the apparent contradiction between competition with the substrate and the synergism with AMP, a strictly noncompetitive inhibitor. The effect of fructose 2,6-bisphosphate was compared to that of other ligands of the enzyme, which, like the substrate and methyl (alpha + beta)fructofuranoside 1,6-bisphosphate bind to the active site or which, like AMP, bind to an allosteric site. An increase in temperature or pH, or the presence of sulfosalicylate, lithium or higher concentrations of magnesium as well as partial proteolysis by subtilisin increased [I]0.5 for fructose 2,6-bisphosphate and AMP without affecting Km. With the exception of the pH change, all these conditions were also without effect on the affinity of the enzyme for the competitive inhibitor, methyl (alpha + beta)fructofuranoside 1,6-bisphosphate. These observations can be explained by assuming that fructose 2,6-bisphosphate has no affinity for the active site of fructose 1,6-bisphosphatase but binds to an allosteric site which is different from the AMP site. Fructose 2,6-bisphosphate is therefore classified as an allosteric competitive inhibitor and a model is proposed which explains its synergism with AMP as well as the various cooperative effects.  相似文献   

10.
Stationary states of the fructose 6-phosphate/fructose 2,6-bisphosphate cycle were investigated in relation to the input concentration of fructose 6-phosphate. Below a critical input concentration of fructose 6-phosphate very low levels of fructose 2,6-bisphosphate were obtained. Above this point the fructose 2,6-bisphosphate changes in direct proportion to the input of fructose 6-phosphate. Phosphorylation of the enzyme causes an increase of the critical input concentration of fructose 6-phosphate. The control coefficients for fructose 2,6-bisphosphate have their maximum at the critical input concentration of fructose 6-phosphate.  相似文献   

11.
To clarify the physiological role of fructose 2,6-bisphosphate in the perinatal switching of myocardial fuels from carbohydrate to fatty acids, the kinetic effects of fructose 2,6-bisphosphate on phosphofructokinase purified from fetal and adult rat hearts were compared. For both enzymes at physiological pH and ATP concentrations, 1 microM fructose 2,6-bisphosphate induced a greater than 10-fold reduction in S0.5 for fructose 6-phosphate and it completely eliminated subunit cooperativity. Fructose 2,6-bisphosphate may thereby reduce the influence of changes in fructose 6-phosphate concentration on phosphofructokinase activity. Based on double-reciprocal plots and ATP inhibition studies, adult heart phosphofructokinase activity is more sensitive to physiological changes in ATP and citrate concentrations than to changes in fructose 2,6-bisphosphate concentrations. Fetal heart phosphofructokinase is less sensitive to ATP concentration above 5 mM and equally sensitive to citrate inhibition. The fetal enzyme has up to a 15-fold lower affinity for fructose 2,6-bisphosphate, rendering it more sensitive to changes in fructose 2,6-bisphosphate concentration than adult heart phosphofructokinase. Together, these factors allow greater phosphofructokinase activity in fetal heart while retaining sensitive metabolic control. In both fetal and adult heart, fructose 2,6-bisphosphate is primarily permissive: it abolishes subunit cooperativity and in its presence phosphofructokinase activity is extraordinarily sensitive to both the energy balance of the cell as reflected in ATP concentration and the availability of other fuels as reflected in cytosolic citrate concentration.  相似文献   

12.
F Sobrino  A Gualberto 《FEBS letters》1985,182(2):327-330
The participation of fructose 2,6-bisphosphate on glycolysis stimulated by insulin and adrenaline in incubated white adipose tissue of rat was investigated. Adrenaline addition to incubated fat-pads strongly decreased the intracellular levels of fructose 2,6-bisphosphate. When the tissue was preincubated with glucose, the presence of insulin in the incubation medium increased fructose 2,6-bisphosphate levels 2-fold. These variations were related to changes in the substrates, ATP and fructose 6-phosphate. It therefore appears that fructose 2,6-bisphosphate may be involved in the control of insulin-induced glycolysis, but it does not seem to play a role in the stimulation of glucolysis by adrenaline.  相似文献   

13.
The effect of insulin on Fru-2,6-P2 levels in human fibroblasts   总被引:4,自引:0,他引:4  
We report that fructose 2,6-bisphosphate (Fru-2,6-P2) levels in quiescent human fibroblasts stimulated with insulin treatment increase in a time- and dose-dependent manner. The biochemical role of the sugar phosphate in the cellular response to the hormone which controls carbohydrate metabolism and acts as mitogenic factor is discussed.  相似文献   

14.
The bisphosphatase domain of the rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been shown to exhibit a structural similarity to yeast phosphoglycerate mutase and human red blood cell 2,3-bisphosphoglycerate mutase including very similar active site sequences with a histidyl residue being involved in phospho group transfer. The liver bifunctional enzyme was found to catalyze the hydrolysis of glycerate 1,3-bisphosphate to glycerate 3-phosphate and inorganic phosphate. The Km for glycerate 1,3-bisphosphate was 320 microM and the Vmax was 11.5 milliunits/mg. Incubation of the rat liver enzyme with [1-32P]glycerate 1,3-bisphosphate resulted in the formation of a phosphoenzyme intermediate, and the labeled amino acid was identified as 3-phosphohistidine. Tryptic and endoproteinase Lys-C peptide maps of the 32P-phosphoenzyme labeled either with [2-32P]fructose 2,6-bisphosphate or [1-32P]glycerate 1,3-bisphosphate revealed that 32P-radioactivity was found in the same peptide, proving that the same histidyl group accepts phosphate from both substrates. Fructose 2,6-bisphosphate inhibited competitively the formation of phosphoenzyme from [1-32P]glycerate 1,3-bisphosphate. Effectors of fructose-2,6-bisphosphatase also inhibited phosphoenzyme formation. Substrates and products of phosphoglycerate mutase and 2,3-bisphosphoglycerate mutase also modulated the activities of the bifunctional enzyme. These results demonstrate that, in addition to a structural homology, the bisphosphatase domain of the bifunctional enzyme has a functional similarity to phosphoglycerate mutase and 2,3-bisphosphoglycerate mutase and support the concept of an evolutionary relationship between the three enzyme activities.  相似文献   

15.
Hepatocytes from overnight-starved rats were incubated with 1-20 mM-fructose, -dihydroxyacetone, -glycerol, -alanine or -lactate and -pyruvate with or without 0.1 microM-glucagon. The production of glucose and lactate was measured, as was the content of fructose 2,6-bisphosphate. The concentrations of fructose (below 5 mM) and dihydroxyacetone (above 1 mM) that gave rise to an increase in fructose 2,6-bisphosphate were those at which a glucagon effect on the production of glucose and lactate could be observed. Glycerol had no effect on fructose 2,6-bisphosphate content or on production of lactate, and glucagon did not stimulate the production of glucose from this precursor. With alanine or lactate/pyruvate as substrates, glucagon stimulated glucose production whether the concentration of fructose 2,6-bisphosphate was increased or not. The extent of inactivation of pyruvate kinase by glucagon was not affected by the presence of the various gluconeogenic precursors. The role of fructose 2,6-bisphosphate in the effect of glucagon on gluconeogenesis from precursors entering the pathway at the level of triose phosphates or pyruvate is discussed.  相似文献   

16.
Lysine 274 is conserved in all known fructose-1,6-bisphosphatase sequences. It has been implicated in substrate binding and/or catalysis on the basis of reactivity with pyridoxal phosphate as well as by x-ray crystallographic analysis. Lys274 of rat liver fructose-1,6-bisphosphatase was mutated to alanine by the polymerase chain reaction, and the T7-RNA polymerase-transcribed construct containing the mutant sequence was expressed in Escherichia coli. The mutant and wild-type forms of the enzyme were purified to homogeneity, and their specific activity, substrate dependence, and inhibition by fructose 2,6-bisphosphate and AMP were compared. While the mutant exhibited no change in maximal velocity, its Km for fructose 1,6-bisphosphate was 20-fold higher than that of the wild-type, and its Ki for fructose 2,6-bisphosphate was increased 1000-fold. Consistent with the unaltered maximal velocity, there were no apparent difference between the secondary structure of the wild-type and mutant enzyme forms, as measured by circular dichroism and ultraviolet difference spectroscopy. The Ki for the allosteric inhibitor AMP was only slightly increased, indicating that Lys274 is not directly involved in AMP inhibition. Fructose 2,6-bisphosphate potentiated AMP inhibition of both forms, but 500-fold higher concentrations of fructose 2,6-bisphosphate were needed to reduce the Ki for AMP for the mutant compared to the wild-type. However, potentiation of AMP inhibition of the Lys274----Ala mutant was evident at fructose 2,6-bisphosphate concentrations (approximately 100 microM) well below those that inhibited the enzyme, which suggests that fructose 2,6-bisphosphate interacts either with the AMP site directly or with other residues involved in the active site-AMP synergy. The results also demonstrate that although Lys274 is an important binding site determinant for sugar bisphosphates, it plays a more significant role in binding fructose 2,6-bisphosphate than fructose 1,6-bisphosphate, probably because it binds the 2-phospho group of the former while other residues bind the 1-phospho group of the substrate. It is concluded that the enzyme utilizes Lys274 to discriminate between its substrate and fructose 2,6-bisphosphate.  相似文献   

17.
In order to investigate a possible regulatory role of fructose 2,6-bisphosphate in early developmental stages, where profound changes in the carbohydrate metabolism are known to occur, this effector was estimated in fetal and postnatal rat liver.Polyphasic changes of the hepatic fructose 2,6-bisphosphate levels were found, which could be correlated to alterations in the glucose metabolism. A minimum in the hepatic fructose 2,6-bisphosphate level at the ?3rd day coincides with the initiation of glycogen synthesis and its increase two hours after birth concurs with glycogen mobilization.  相似文献   

18.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

19.
Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme.  相似文献   

20.
Human platelets contain fructose 2,6-bisphosphate, 6-phosphofructo-l-kinase (ATP: D-Fructose-6-phosphate-1-phosphotransferase, E.C.2.7. 1.11), the rate-limiting enzyme in platelet glycolysis appear to be significantly activated by physiological concentration of the compound, suggesting for fructose 2,6-bisphosphate a key regulatory role in the control of the glycolytic flux. Incubation of human platelets with thrombin results in a parallel and rapid increase of fructose-2,6-bisphosphate levels and glycolytic flux, suggesting that the compound may also be involved in the enhancement of glycolysis elicited by the stimulating agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号