首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recordings were made from single sensilla placodea of the worker honeybee (Apis mellifera). The sensilla were stimulated with one of two sets of four compounds and their binary mixtures, at two dosage levels. Aromatic compounds comprised one set, and saturated n-octane derivatives comprised the other set. Correlation, principal component, and cluster analyses indicate that responses to binary mixtures are not linear combinations of responses to the component compounds. The first principal component indicated that neuronal units had either more excitatory or more inhibitory responses to all odorants than would be expected from a model where inhibitory and excitatory responses are randomly distributed among the neuronal units. When compared to the responses to the component odorants, synergistic responses to binary odors occurred more often than would be expected by chance. Clear inhibitory responses to binary odors were less prevalent. This study agrees with an earlier study employing aromatic odorants in that most of the aromatic odorants each had groups of receptor neurons that were relatively selective for it, and each odorant had a distinctly different number of receptor neurons selective for it. Among the octane derivatives, receptor neurons were selective for the level of oxidation of the functional group or its site of attachment, rather than specific compounds.  相似文献   

2.
The aim of our paper was to investigate whether single olfactory receptor neurons (ORNs) of the spiny lobster Panulirus argus functionally express more than one type of receptor, examine the consequences of this on coding of mixtures, and compare principles of odorant mixture coding by spiny lobsters with that by the channel catfish, which has been studied extensively using the same experimental and analytical procedures (Caprio et al. 1989; Kang and Caprio 1991). We examined responses of individual taurine-sensitive ORNs to binary mixtures of excitatory compounds, either competitive agonists (taurine, β-alanine, hypotaurine) or non-competitive agonists (taurine, l-glutamate, ammonium chloride, adenosine-5′-monophosphate). Responses to mixtures were compared to two indices: mixture discrimination index (MDI) and independent component index (ICI). Binary mixtures of competitive agonists had MDI values close to 1.0, as expected for competitors. Mixtures of non-competitive agonists had ICI values averaging 0.83, indicating the effects of the components are not independent. We conclude that individual olfactory cells of spiny lobsters can express more than one type of receptor mediating excitation, one of which typically has a much higher density or affinity, and that spiny lobster and catfish olfactory cells encode mixtures of two excitatory agonists using similar rules. Accepted: 20 December 1996  相似文献   

3.
4.
Extracellular electrophysiological recordings were made from individual type-A trichoid sensilla on the antenna of the female sphinx moth Manduca sexta. A single annulus of the antenna bears about 1,100 of these sensilla, and each is innervated by two olfactory receptor cells. We tested the responses of these receptor cells to a panel of 102 volatile compounds, as well as three plant-derived odor mixtures, and could discern three different functional types of type-A trichoid sensilla. One subset of receptor cells exhibited an apparently narrow molecular receptive range, responding strongly to only one or two terpenoid odorants. The second subset was activated exclusively by aromatics and responded strongly to two to seven odorants. The third subset had a broad molecular receptive range and responded strongly to odorants belonging to several chemical classes. We also found receptor cells that did not respond to any of the odorants tested but were spontaneously active. Certain odorants elicited excitatory responses in some sensilla but inhibitory responses in others, and some receptor cells were strongly excited by certain odorants but inhibited by others. Impregnation of groups of receptor cells in type-A trichoid sensilla with rhodamine-dextran demonstrated that their axons project mainly to the large female glomeruli of the antennal lobe.  相似文献   

5.
Extracellular electrophysiological recordings were made from individual type-A trichoid sensilla on the antenna of the female sphinx moth Manduca sexta. A single annulus of the antenna bears about 1,100 of these sensilla, and each is innervated by two olfactory receptor cells. We tested the responses of these receptor cells to a panel of 102 volatile compounds, as well as three plant-derived odor mixtures, and could discern three different functional types of type-A trichoid sensilla. One subset of receptor cells exhibited an apparently narrow molecular receptive range, responding strongly to only one or two terpenoid odorants. The second subset was activated exclusively by aromatics and responded strongly to two to seven odorants. The third subset had a broad molecular receptive range and responded strongly to odorants belonging to several chemical classes. We also found receptor cells that did not respond to any of the odorants tested but were spontaneously active. Certain odorants elicited excitatory responses in some sensilla but inhibitory responses in others, and some receptor cells were strongly excited by certain odorants but inhibited by others. Impregnation of groups of receptor cells in type-A trichoid sensilla with rhodamine-dextran demonstrated that their axons project mainly to the large female glomeruli of the antennal lobe.  相似文献   

6.
(1) Electro-olfactogram recording was used to determine whether the olfactory epithelium of adult sea lamprey is specifically sensitive to bile acids, some of which have been hypothesized to function as pheromones. Ten bile acids were selected from 38 which had already been pre-screened for olfactory activity. These compounds were first tested on their own, then as adapting stimuli, and finally as components of mixtures (2) The lamprey-specific bile acids, petromyzonol sulfate and allocholic acid, were the most potent compounds tested. Five other bile acids were also detectable at picomolar concentrations. Petromyzonol sulfate had a distinctive dose-response curve. (3) Cross-adaptation demonstrated that sensitivity to bile acids is attributable to at least four independent classes of olfactory receptor sites and that both the nature and position of conjugating group(s) are critical to receptor specificity. Notably, petromyzonol sulfate has its own highly specific and independent receptor site. The situation for unconjugated bile acids was more complex and there appeared to be several sub-classes of receptor sites for these compounds. (4) Mixture studies largely confirmed the cross-adaptation results, describing receptor site independence for the same four sets of odorants. Mixture enhancement was also seen when expected and there was no evidence of mixture suppression. (5) Together, these data demonstrate that conspecific bile acids are discriminated by the olfactory epithelium of the sea lamprey, supporting the possibility that these compounds may function as migratory pheromones. Accepted: 23 November 1996  相似文献   

7.
Olfactory receptor cells in insects are modulated by neurohormones. Recordings from cockroach olfactory sensilla showed that a subset of sensory neurons increase their responses to selected nonpheromone odorants after octopamine application. With octopamine application, recordings demonstrated increased firing rates by the short but not the long alcohol-sensitive sensilla to the nonpheromone volatile, hexan-1-ol. Within the same sensillum, individual receptor cells are shown to be modulated independently from each other, indicating that the octopamine receptors reside in the receptor not in the accessory cells. A uniform decrease in the amplitude of electroantennogram, which is odorant independent, is suggested to reflect the rise in octopamine concentration in the antennal hemolymph. Perception of general odorants measured as behavioral responses changed qualitatively under octopamine treatment: namely, repulsive hexan-1-ol became neutral, whereas neutral eucalyptol became attractive. Octopamine induced a change in male behavioral responses to general odors that were essentially the same as in the state of sexual arousal. Our findings suggest that sensitivity to odors having different biological significances is modulated selectively at the peripheral as well as other levels of olfactory processing.  相似文献   

8.
The aim of this study was to investigate quality coding of blend ratios of binary mixtures by olfactory receptor cells in the spiny lobster. Three odorants (adenosine-5′-monophosphate, l-glutamate, and taurine) at 0.1–100 μmol · l−1 and seven blend ratios of each of their binary mixtures at a total concentration of 100 μmol · l−1 were used. The olfactory cells recorded (n = 48) evoked across-neuron patterns for single odorants that were well separated from each other. Across-neuron patterns varied with stimulus concentration but less than with stimulus type. Blend ratios of the three mixtures evoked across-neuron patterns that were orderly placed within a continuum between those elicited by the components. Mixture interactions, defined as a lack of independent effects by a mixture's components, occurred in 25, 24 and 37% of responses to blend ratios of glutamate/taurine, adenosine-5′-monophosphate/taurine, and glutamate/adenosine-5′-monophosphate, respectively. These mixture interactions did not have a large enough effect on the across-neuron patterns for the mixtures such they would be novel relative to those of the single components. These results suggest that despite mixture interactions the quality of individual compounds is not lost when mixed. This corroborates behavioral studies showing that spiny lobsters have the ability to elementally process odor mixtures. Accepted: 23 August 1996  相似文献   

9.
The cellular substrates of antennular flicking behavior in the crayfish Procambarus clarkii were investigated. Flicking involves fast downward movements of the external filament of each biramous antennule (1st antenna), and is mediated by phasic contractions of a short muscle, the external filament depressor. Phasic contractions of the external filament depressor depend upon stereotyped impulse bursts in a single motorneuron (P1). These bursts have a characteristic impulse frequency profile that is consistent upon successive occurrences. The temporal characteristics of the impulse burst suggest that the central depolarizations generating each burst may be similar to driver potentials described for motor neurons in crustacean cardiac ganglia. Responses of the external filament to odorants have a long latency and are characterized by repetitive bursts and tonic activity in some external filament depressor fibers. Tonic activity in a slowly contracting muscle, the antennular depressor muscle, is also evoked by chemical stimulation. Flicking is consistently evoked only by mechanical or hydrodynamic stimulation of the cephalothorax, antennae and antennules. The sensitivity and short latency of the hydrodynamic antennule-generated flick reflex is consistent with the sensitivity of rapidly conducting, hydrodynamically activated mechanoreceptor neurons in both antennular filaments. I propose that antennular flicking, which has been shown to enhance the dynamic response characteristics of olfactory receptor neurons on the external antennular filament, has evolved as a response to the turbulence associated with fluid movement, within which chaotic odorant concentration fronts may be imbedded. Accepted: 23 October 1996  相似文献   

10.
The cuticle strain which develops in the hindleg tibiae when a locust prepares to kick, or when the tibia thrusts against an obstacle, is detected by two campaniform sensilla, which reflexly excite the fast extensor tibiae motoneuron, some of the flexor tibiae motoneurons and nonspiking interneurons. The reflex excitation is adaptive for the extensor motoneuron during both co-activation and thrusting, but is only adaptive for the flexor motoneurons during co-activation, and is maladaptive during thrusting. We show that the femoral chordotonal organ, which monitors tibial position, controls the efficacy of the strain feedback. The campaniform sensilla-induced depolarization in the extensor motoneuron is about twice as large when the tendon is in mid position (reflecting a tibial-femoral angle of 90°) than when fully stretched (reflecting tibial flexion), while in the flexors the reverse is true. The amplitudes of excitatory postsynaptic potentials evoked by single campaniform sensilla spikes, are, however, not affected. Our data suggests that the chordotonal organ modulates the gain of the strain feedback onto the motoneurons by exciting interneuronal circuits whose output sums with the former. Thrusting typically occurs with the tibia partially extended, therefore the actions of the chordotonal organ support the production of a maximal thrusting force. Accepted: 27 December 1996  相似文献   

11.
Tremendous adaptability of insects is predominantly provided by fast tuning of physiological functioning of an organism to the permanently changing environmental conditions. One of the mechanisms of plasticity in insects is modulation of performance of their sense organs by neurohormones. Activity of at least three out of four receptor cells located in cockroach pheromonesensitive sensilla is modulated by octopamine. An increase of firing rate of pheromone receptor cells and a decrease of electroantennogram amplitude is accompanied by enhanced behavioral responses of male cockroaches to sex pheromone. The effect of octopamine on reception of a repellent (1,8-cineole, eucalyptol) by an insect is reported for the first time. Simultaneous modulation of responses of receptor cells located in sex specific sensilla to semantically different odorants indicates their cooperation in formation of insect behavior.  相似文献   

12.
Vast adaptability of insects is provided substantially by fast tining of physiological functioning of an organism to conform to the permanently changing environmental conditions. One of the mechanisms of plasticity in insects is modulation of performance of their sense organs by neurohormones. Activity of at least three out of four receptor cells located in cockroach pheromonesensitive sensilla is under influence of octopamine. Increase in firing rate of pheromone receptor cells and decrease in electroantennogram amplitude is accompanied by enhanced behavioural responses of male cockroaches to sex pheromone. The effect of octopamine on reception of a repellent (1,8-cineole) by an insect is reported for the first time. Simultaneous modulation of responses of receptor cells located in sex specific sensilla to semantically different odorants implies their cooperation in formation of insect's behaviour.  相似文献   

13.
Olfactory discrimination of structurally similar alcohols by cockroaches   总被引:2,自引:0,他引:2  
The capability of the cockroach Periplaneta americana to discriminate odors of structurally similar aliphatic alcohols was studied by using an operant conditioning paradigm. Cockroaches were trained to discriminate three odors: one odor associated with sucrose solution (reward) and two odors associated with NaCl solution (non-reward). After training, their odor preferences were tested by counting the number of visits to each odor source. We tested the capability of cockroaches to discriminate (1) three normal aliphatic alcohols with different numbers of carbon (1-pentanol, 1-hexanol and 1-octanol), (2) three C6 aliphatic alcohols (1-hexanol, 2-hexanol and trans-2-hexen-1-ol), (3) binary mixtures of two of these three alcohols and their components, and (4) 1-hexanol solution of three different concentrations (1, 10 and 100 micro g micro l(-1)). Cockroaches exhibited higher preferences for the odors associated with reward in these tests, and we therefore conclude that cockroaches can discriminate these odors. However, discrimination of 1-hexanol and trans-2-hexen-1-ol and their binary mixture was imperfect, in that some statistical tests suggested significant level of discrimination but other tests did not. In addition, the cockroaches learned to associate a 1-hexanol solution of the highest or lowest concentration with sucrose reward but failed to learn to associate 1-hexanol of an intermediate concentration with reward.  相似文献   

14.
Addition of (Z)-11-hexadecenyl acetate (Z11-16:Ac) into a normally attractive binary blend of Heliothis virescens pheromone components resulted in a suppression of upwind flight and source location by males. Male response was reduced even at the lowest dosages of Z11-16:Ac tested but upwind flight and source location were most clearly reduced when the loading of Z11-16:Ac reached 10% or more of the (Z)-11-hexadecenal (Z11-16:Ald) loading (the major component present in the binary blend). Similar patterns of suppression in response were noted when Z11-16:Ac was added to binary blends of pheromone components at both 10 and 100 μg loadings of Z11-16:Ald. Males in casting flight following upwind flight in a mechanically generated pulsed plume, responded to the interception of a subsequent, single binary-blend filament by making a toward-source upwind surge. Responses of males to a single filament that was tainted by a level of Z11-16:Ac that had allowed some reduced level of upwind flight and source location to occur in the previous plume experiments were diminished compared with their control counterparts. Analysis of the flight tracks revealed that the surges in response to single tainted filaments were stunted because males made fewer significant changes in course angles steered, airspeeds generated, and in the tempo of counterturns executed. Accepted: 28 December 1996  相似文献   

15.
The tarso-pretarsal chordotonal organ as an element in cockroach walking   总被引:3,自引:3,他引:0  
Many types of sense organs have been demonstrated to show repetitive discharges during walking that could provide informational cues about leg movements and other parameters of locomotion. We have recorded activities of receptors of the distal (tarsal) segments of the cockroach hindleg in restrained and freely moving animals while they were videotaped. These recordings show peaks of activities at the onset and termination of the stance phase. We have morphologically and physiologically identified a joint angle receptor, the tarso-pretarsal chordotonal organ, that contributes to the discharges seen late in stance, prior to the onset of leg flexion in swing. This sense organ encodes the angle and rate of change of the most distal leg joint and specifically discharges when the claws are disengaged from the substrate. Applied displacements of the claws in restrained preparations elicit reflex activation of the tibial flexor muscle and a crossed extensor reflex in the opposite hindleg. These reflexes could function to insure that leg flexion in swing does not occur until the claws are disengaged and to enhance support by the opposite hindleg. Thus, the regular discharges of the chordotonal organ could assure efficient and coordinated muscle contractions and movements during normal, unperturbed walking. Accepted: 2 January 1997  相似文献   

16.
The ultrastructure and physiology of the maxillary palp of Drosophila melanogaster have been studied in wild-type and lozenge mutants. Olfactory physiology in the maxillary palp is shown to depend upon the lozenge(lz) gene. Reduced response amplitudes were recorded for all odorants tested, and the physiological defect was shown to map to the lz locus. The structure of the maxillary palp sensilla is described by scanning electron microscopy (SEM) at high magnification, initially in the wild-type. A linear arrangement of pores, connected by furrows, was found in one class of sensilla, the basiconic sensilla. In the lz 3 mutant, morphological alterations in the basiconic sensilla and duplications of sensilla are documented by SEM. The correlation of structural abnormalities in the lz sensilla and physiological abnormalities in odorant response are consistent with an olfactory role for the basiconic sensilla of the maxillary palp. Accepted: 10 September 1996  相似文献   

17.
Ultrastructural examination of grooved-peg (GP) sensilla on the antenna of fifth instar Triatoma infestans nymphs by scanning electron microscopy and transmission electron microscopy reveal that they are 8–18 μm long with a diameter of about 2–2.8 μm at the non-articulated base. Some pegs have a terminal pore. These double-walled wall-pore (dw-wp) sensilla have an outer cuticular wall with 13–18 longitudinal grooves at the distal part of the peg. Groove channels are present at the bottom of the grooves from which radial spoke channels lead into the inner sensillum-lymph cavity. A dendrite sheath connects the tip of the thecogen cell to the inner cuticular wall thus forming separated outer and inner sensillum-lymph cavities. Four or five bipolar receptor cells are ensheathed successively within the GP sensilla by the thecogen cell, trichogen and tormogen cells. The inner dendritic segments of each sensory cell give rise at the ciliary constriction to an unbranched outer dendritic segment which can reach the tip of the sensillum.Electrophysiological recordings from the GP sensilla indicate that they house NH3, short-chain carboxylic acid and short-chain aliphatic amine receptor cells and can be divided into three functional sub-types (GP 1–3). All GP sensilla carry a receptor cell excited by aliphatic amines, such as isobutylamine, a compound associated with vertebrate odour. GP type 1 and 2 sensilla house, in addition, an NH3-excited cell whereas the type 2 sensilla also contains a short-chain carboxylic acid receptor. No cell particularly sensitive to either NH3 or carboxylic acids was found in the grooved-peg type 3 sensilla. GP types 1, 2 and 3 represent ca. 36, 10 and 43% of the GP sensilla, respectively, whereas the remaining 11% contain receptor cells that manifest normal spontaneous activity but do not respond to any of the afore mentioned stimuli.  相似文献   

18.
19.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon. Received: 8 October 1996 / Accepted: 27 November 1996  相似文献   

20.
Abstract. Extracellular single sensillum recordings were made from the double-walled multiporous sensilla coeloconica on the antennae of males and females of Bombyx mori L. (Lepidoptera: Bombycidae). The receptor neurones responded to olfactory stimuli; no thermo- or hygroreceptors were found. Many neurones responded with a decrease of the transepithelial potential and increased rates of nerve impulses to aliphatic hydrocarbons with chain lengths between three and ten carbon atoms. Most abundant were neurones responding best to acids and aldehydes. Receptor neurones responding with a low threshold to only one acid of a certain chain length were considered as specialists. In some sensilla an increase of the transepithelial potential combined with nerve impulse inhibition was observed in response to monoterpene alcohols. Neurones responding with excitation to aliphatic acids and with inhibition to terpenes were found in the same sensilla. Some neurones excited by aliphatic acids were inhibited by terpenes. Responses to headspace volatiles of mulberry leaves, the larval food, were also obtained. Therefore the coeloconic sensilla may be involved in the selection of oviposition sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号