首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemagglutination (HA) by pilus antigen 987P of an enterotoxigenic Escherichia coli strain 987 was examined using fresh and glutaraldehyde (GA)-fixed erythrocytes (RBC) of various animals. Only when GA-fixed RBC was employed, a strain 987 exhibited striking HA activities. This was also demonstrated by using latex heads sensitized with the 987P antigen. The 987P-specific antiserum inhibited HA of strain 987 and 987P sensitized latex beads against GA-fixed RBC. We concluded that HA of strain 987 against GA-fixed RBC was specifically associated with the presence of 987P pilus antigen but do not exclude a possibility that adhesin is distinct from pili antigen.  相似文献   

2.
Shiga toxin-producing Escherichia coli causes hemolytic uremic syndrome, a constellation of disorders that includes kidney failure and central nervous system dysfunction. Shiga toxin binds the amphipathic, membrane-bound glycolipid globotriaosylceramide (Gb(3)) and uses it to enter host cells and ultimately cause cell death. Thus, cell types that express Gb(3) in target tissues should be recognized. The objective of this study was to determine whether immunohistologic detection of Gb(3) was affected by the method of tissue preparation. Tissue preparation included variations in fixation (immersion or perfusion) and processing (paraffin or frozen) steps; paraffin processing employed different dehydration solvents (acetone or ethanol). Perfusion-fixation in combination with frozen sections or acetone-dehydrated tissue for paraffin sections resulted in specific recognition of Gb(3) using immunohistochemical or immunofluorescent methods. In the mouse tissues studied, Gb(3) was associated with tubules in the kidney and neurons in the nervous system. On the other hand, Gb(3) localization to endothelial cells was determined to be an artifact generated due to immersion-fixation or tissue dehydration with ethanol. This finding was corroborated by glycolipid profiles from tissue subjected to dehydration; namely Gb(3) was subject to extraction by ethanol more than acetone during tissue dehydration. The results of this study show that tissue preparation is crucial to the persistence and preservation of the glycolipid Gb(3) in mouse tissue. These methods may serve as a basis for determining the localization of other amphipathic glycolipids in tissue.  相似文献   

3.
The energy-dependent processes coupled to electron transport were studied in isolated pea chloroplasts treated with low concentrations (1-5 mM) of glutaraldehyde (GA) in the dark and in the light sufficient to cause energization of the membrane. After GA treatment the chloroplasts exhibited a strong suppression of cyclic and non-cyclic phosphorylation, coupled (+ADP+Pi) electron transport and diminution of the light-activated Mg2+-ATPase activity. The rate of basal electron transport was unaffected. The GA-treated chloroplasts were found to retain the capacity to form the osmotic component of the transmembrane potential. These data and the results of the effect of florizine and ATP on electron transport suggest that the effect of GA on energy transduction processes associated with photophosphorylation may consist in its action on reversible H+-ATPase. In light-adapted samples treated with GA the data characterizing the formation of a high energy state (rate of photophosphorylation, steady-state level of photo-induced quenching of atebrin fluorescence and its dark recovery; photo-induced absorbance changes at 520 nm; rate of the slow phase of delayed fluorescence increment) appear to be changed to a greater extent as compared to the dark-adapted samples. The observed changes may arise from a greater conductivity of thylakoid membranes due to fixation of the H+-ATPase proton channel in the "open" state.  相似文献   

4.
A special structural pattern of the smooth endoplasmic reticulum (SER) has been observed in the kidney of the snail Cryptomphalus aspersa. Two types of cells (clear and dark) cover the foldings of the renal sac; the dark cells are by far the most numerous. A cisterna of SER enveloping the nucleus appears invariably in both types of cells, with no disruptions, or small ones (from 50 to 90 nm) along its profile. The layer of cytoplasm lodged between the external nuclear membrane and this cisterna is found invariably to be from 0-20 to 0-25 mum in width. Glycogen is abundant in the cytoplasm as alpha particles, and also in the nucleus, but as beta particles. It is noteworthy that absolutely no glycogen is present in the layer of cytoplasm lodged between the nuclear membrane and the surrounding SER envelope. Long profiles of SER are also observed closely approaching and parallel to the plasma membrane of the dark cells. Considering the role of SER in glycogen metabolism in the kidney of the snail, the possible function of these cisternae as a support system ofr enzymes involved in the metabolism of glucides is discussed.  相似文献   

5.
Immunoelectron microscopic labeling of calsequestrin on ultra-thin sections of rat ventricular muscle prepared by quick-freezing, freeze-drying, and direct embedding in Lowicryl K4M was compared to that observed on ultra-thin sections prepared by chemical fixation, dehydration in ethanol, and embedding in Lowicryl K4M. Brightfield electron microscopic imaging of cryofixed, freeze-dried, osmicated, and Spurr-embedded rat ventricular tissue showed that the sarcoplasmic reticulum was very well preserved by cryofixation and freeze-drying. Therefore, the four structurally distinct regions of the sarcoplasmic reticulum (i.e., the network SR, the junctional SR, the corbular SR, and the cisternal SR) were easily identified even when myofibrils were less than optimally preserved. As previously shown by immunoelectron microscopic labeling of ultra-thin frozen sections of chemically fixed tissue, calsequestrin was confined to the lumen of the junctional SR and of a specialized non-junctional (corbular) SR, and was absent from the lumen of network SR in cryofixed, freeze-dried, Lowicryl-embedded myocardial tissue. In addition, a considerable amount of calsequestrin was also present in the lumen of a different specialized region of the non-junctional SR, called the cisternal sarcoplasmic reticulum. By contrast, relocation of calsequestrin to the lumen of the network SR was observed to a variable degree in chemically fixed, ethanol-dehydrated, and Lowicryl-embedded tissue. We conclude that tissue preparation by cryofixation, freeze-drying, and direct embedding in Lowicryl K4M for immunoelectron microscopic localization of diffusible proteins, such as calsequestrin, is far superior to that obtained by chemical fixation, ethanol dehydration, and embedding in Lowicryl K4M.  相似文献   

6.
Spectral sensitivity for stimulatory and inhibitory effectsof light on fruit-body formation in Coprinus congregatus wasdetermined between 250 and 730 nm using the Okazaki Large Spectrograph.Eight-day-old dark grown cultures were exposed to varying amountsof monochromatic photon fluences for 60 s. Primordial initiationwas strictly localized in the youngest hyphae of the culture.After a dark period of 24 h at 25C, the primordial initiationwas assayed by counting the number of primordia. The actionspectrum showed peaks of effectiveness at 260, 280, 370 and440 nm. The quantum effectiveness at 280 nm was 4 times higherthan that at 440 nm. The lethal effect of far UV (260–280nm) was demonstrated when using 100 times higher photon fluencesthan that inducing primordial formation. The primordia growing in continuous light required an uninterrupteddark period for 5 h at 25C to produce sporulating fruit-bodies.A brief exposure to light during the dark period inhibited thedevelopment of primordia. The action spectrum for this photoinhibitoryeffect showed maxima at 280, 350, 380, 440 and 460 nm. The quantumeffectiveness at 280 nm was Ca. 1.3 times higher than that ofblue light. The spectral sensitivities for primordial initiationand for inhibition of primordial development were quite similarand suggested a common photoreceptor during fruit-body morphogenesis. 4 Permanent address: Botany Department, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan.  相似文献   

7.
On-grid (post-embedding) immunolabeling methods with epoxy resins have been difficult to apply to thin structures such as intermediate filaments, which may remain inaccessible within the plastic. In this study, glial fibrillary acidic protein (GFAP), the major protein of astrocyte intermediate filaments, was localized with a post-embedding immunogold method, using both unosmicated and osmicated material embedded in epoxy resin. The tissue studied was from a diagnostic brain biopsy on a child with Alexander's disease. This disorder is characterized by proliferation of astrocyte intermediate filaments and formation of Rosenthal fibers. With unosmicated tissue, as in a previous study, extensive labeling of the glial filaments was achieved only when ultra-thin sections were pre-treated with dilute sodium ethoxide, an agent that dissolves plastic. Fifteen-nm gold could be used. With osmicated tissue, localization to glial filaments required pre-treatment with sodium ethoxide and with the oxidizing agent sodium metaperiodate, followed by the use of small (5 nm) colloidal gold. That 5-nm gold was required for labeling filaments in osmicated material suggested that osmication increases problems of penetrability and antigen accessibility within ultra-thin sections. The large Rosenthal fibers were labeled by 15-nm gold in both unosmicated and osmicated material. The methods employed may be useful for electron immunolocalizations to other thin structures in material embedded in epoxy resin.  相似文献   

8.
目的用包埋前原位尾端标记技术在电子显微镜下发现小鼠淋巴结生发中心早期凋亡细胞。方法用GA,PA,PLP分别固定淋巴组织,将其分别切成50μm切片,TUNEL染色,制成1μm切片光镜确认,着色部位制成超薄切片,在电镜下,进行比较观察。结果GA固定的组织中细胞核的TUNEL染色,虽然表面清晰可见,但对组织渗透性较差;PA固定的组织清晰度稍差,但渗透性最好,在电子显微镜下观察效果满意,PLP固定染色效果差,在细胞凋亡的早期,用PA染色时凋亡的细胞核内,可见尚未出现凋亡的生发中心细胞核形态学改变以及核染色质浓缩的核。结论以PA固定的组织,用包埋前技术、TUNEL染色的方法具有简便,染色清晰,易分辨,特异性强的特点,且未见标本损坏现象。  相似文献   

9.
BACKGROUND: To study the fragile Prymnesiophyte species Chrysochromulina polylepis by flow cytometry (FC), we needed an effective fixation method. This method must guarantee a high yield of fixed cells to achieve acceptable measurement times by FC and to allow quick processing of many samples. Moreover, we wanted a method that allows for storage of fixed samples when FC analysis cannot be done immediately. METHODS: Different aldehydes and methanol were tested at different final concentrations. Gravity sedimentation and centrifugation were applied to achieve higher cell concentrations. Storage of fixed samples was tested under different conditions. RESULTS: 0.25% glutaraldehyde (GA) fixation yielded a recovery rate of about 90%. The signals obtained by FC analysis were excellent. It is possible to centrifuge GA-fixed cells and to store them for several weeks. CONCLUSIONS: GA is the fixative of choice for FC analysis of C. polylepis (and possibly other small delicate species) because it yielded highly significant recovery rates and high-quality FC signals. Cells can be centrifuged to increase the cell concentration, thereby achieving short measurement times with FC. The possibility of long-term storage of fixed cells presents an additional advantage if FC analysis cannot be done immediately.  相似文献   

10.
Drought induces an increase in a tree's vulnerability to a loss of its hydraulic conductivity in many tree species, including two common in western Canada, trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera). Termed ‘cavitation fatigue’ or ‘air‐seeding fatigue’, the mechanism of this phenomenon is not well understood, but hypothesized to be a result of damage to xylem pit membranes. To examine the validity of this hypothesis, the effect of drought on the porosity of pit membranes in aspen and balsam poplar was investigated. Controlled drought and bench dehydration treatments were used to induce fatigue and scanning electron microscopy (SEM) was used to image pit membranes for relative porosity evaluations from air‐dried samples after ethanol dehydration. A significant increase in the diameter of the largest pore was found in the drought and dehydration treatments of aspen, while an increase in the percentage of porous pit membranes was found in the dehydration treatments of both species. Additionally, the location of the largest pore per pit membrane was observed to tend toward the periphery of the membrane.  相似文献   

11.
Fragments of the Azotobacter vinelandii tetragonal surface (S) layer, free of outer membrane material, were obtained by treating whole cells with 100 microM EDTA. The three-dimensional structure of the S layer was reconstructed from tilted-view electron micrographs of the S-layer fragments, after computer-assisted image processing by correlation averaging. At a resolution of 1.7 nm, the S layer exhibited funnel-shaped subunits situated at one fourfold-symmetry axis and interconnected at the other fourfold-symmetry axis to form prominent cruciform linking structures. These data, in conjunction with a relief reconstruction of the surface of freeze-etched whole cells, indicated that the apex of the funnel-shaped subunit was associated with the outer membrane, while the funnel "opening" faced the environment; the cruciform linking structures were formed at the outermost surface of the S layer. Electron microscopy and image enhancement were used to compare the structure of the outer membrane-associated S layer with that of fragments of the S layer dislodged from the outer membrane. This analysis revealed an increase in the lattice constant of the S layer from 12.5 to 13.6 nm and an alteration in the position of the cruciform linking structures in the z direction. These conformational changes resulted in a reduction in the thickness of the S layer (minimum estimate, 5 nm) and an apparent increase in the size of the gaps between the subunits. In terms of the porosity of the S layer, this gave the appearance of a transition from a closed to a more open structure.  相似文献   

12.
We have devised a method for immunogold staining of unosmicated, plastic-embedded tissue which gives high levels of specific staining without scrificing cell ultrastructure. The key to this method is a combination of several standard techniques optimized to preserve cell membranes as well as antigen. Important conditions include (a) a combination primary fixative, (b) post-fixation with uranyl acetate to preserve membrane phospholipids, (c) dehydration with acetone to minimize extraction of phospholipids, (d) low-temperature embedding in LR Gold resin, and (e) use of osmium tetroxide to stain thin sections after immunogold labeling. We have developed this method specifically to localize the membrane receptor for immunoglobulin G in the jejunal epithelium of the neonatal rat. Ultra-thin sections of embedded tissue were stained with a monoclonal primary antibody and colloidal gold-labeled secondary antibody, followed by 2% osmium tetroxide and lead citrate. The receptor was resolved in the well-preserved network of tubules, endosomes, and other membrane compartments involved in immunoglobulin transport. In several other tissues processed by this method, cell ultrastructure resembled that seen after conventional osmium post-fixation and epoxy embedding. In addition to its usefulness in these studies, this general method should be applicable to many other immunocytochemical problems.  相似文献   

13.
The pneumocytes of the larva of Salamandra salamandra contain numerous lamellar bodies and their precursors: electron-dense bodies at various stages of development. Both lamellar bodies and electron-dense bodies occur inside the fluid-filled lung. The former are spherical or bell-shaped and possess concentrically arranged smooth membranes, 8 nm thick; the latter have paracrystalline cores composed of alternately oriented clear and dark striations (3.6–3.9 nm and 2.6–3.6 nm, respectively). On all sides such cores separate membranes, which assume a concentric orientation. No tubular myelin was observed in any phase of the transformation of lamellar bodies and electron-dense bodies into the surface lining layer. Fixation of the lungs of adult individuals with tannic acid-containing fixative visualized the surface lining layer, but not tubular myelin.  相似文献   

14.
This study shows that dehydration induces imbalanced metabolism before loss of membrane integrity in desiccation-sensitive germinated radicles. Using a photoacoustic detection system, responses of CO(2) emission and fermentation to drying were analyzed non-invasively in desiccation-tolerant and -intolerant radicles of cucumber (Cucumis sativa) and pea (Pisum sativum). Survival after drying and a membrane integrity assay showed that desiccation tolerance was present during early imbibition and lost in germinated radicles. However, tolerance could be re-induced in germinated cucumber radicles by incubation in polyethylene glycol before drying. Tolerant and polyethylene glycol (PEG)-induced tolerant radicles exhibited a much-reduced CO(2) production before dehydration compared with desiccation-sensitive radicles. This difference was maintained during dehydration. In desiccation-sensitive tissues, dehydration induced an increase in the emission of acetaldehyde and ethanol that peaked well before the loss of membrane integrity. Acetaldehyde emission from sensitive radicles was significantly reduced when dehydration occurred in 50% O(2) instead of air. Acetaldehyde/ethanol were not detected in dehydrating tolerant radicles of either species or in polyethylene glycol-induced tolerant cucumber radicles. Thus, a balance between down-regulation of metabolism during drying and O(2) availability appears to be associated with desiccation tolerance. Using Fourier transform infrared spectroscopy, acetaldehyde was found to disturb the phase behavior of phospholipid vesicles, suggesting that the products resulting from imbalanced metabolism in seeds may aggravate membrane damage induced by dehydration.  相似文献   

15.
Synopsis Rat brains were fixed either with glutaraldehyde (GA) or formaldehyde (FA). After 20 min or 24 h fixation the osmotic sensitivity of the tissue was tested by immersion in (a) distilled water (b) 0.15m or (c) 0.3m cacodylate buffer. GA-fixed material retained some sensitivity to osmotic stress after 20 min fixation but was entirely resistant after 24 h fixation. Ultrastructural preservation was good after only 20 min GA-fixation, provided that the subsequent treatment was with isotonic solutions. The fixation with FA was less efficient and slower. Dark neurons and other artifacts were commonly seen after the 20 min fixation with FA. Prolongation of the FA-fixation overnight gave markedly better preservation, but however, never equivalent to that with GA.  相似文献   

16.
Freeze-substitution and more conventional embedding protocols were evaluated for their accurate preservation of eubacterial ultrastructure. Radioisotopes were specifically incorporated into the RNA, DNA, peptidoglycan, and lipopolysaccharide of two isogenic derivatives of Escherichia coli K-12 as representative gram-negative eubacteria and into the RNA and peptidoglycan of Bacillus subtilis strains 168 and W23 as representative gram-positive eubacteria. Radiolabeled bacteria were processed for electron microscopy by conventional methods with glutaraldehyde fixation, osmium tetroxide postfixation, dehydration in either a graded acetone or ethanol series, and infiltration in either Spurr or Epon 812 resin. A second set of cells were simultaneously freeze-substituted by plunge-freezing in liquid propane, substituting in anhydrous acetone containing 2% (wt/vol) osmium tetroxide, and 2% (wt/vol) uranyl acetate, and infiltrating in Epon 812. Extraction of radiolabeled cell components was monitored by liquid scintillation counting at all stages of processing to indicate retention of cell labels. Electron microscopy was also used to visually confirm ultrastructural integrity. Radiolabeled nucleic acid and wall components were extracted by both methods. In conventionally embedded specimens, dehydration was particularly damaging, with ethanol-dehydrated cells losing significantly more radiolabeled material during dehydration and subsequent infiltration than acetone-treated cells. For freeze-substituted specimens, postsubstitution washes in acetone were the most deleterious step for gram-negative cells, while infiltration was more damaging for gram-positive cells. Autoradiographs of specimens collected during freeze-substitution were scanned with an optical densitometer to provide an indication of freezing damage; the majority of label lost from freeze-substituted cells was a result of poor freezing to approximately one-half of the cell population, thus accounting for the relatively high levels of radiolabel detected in the processing fluids. These experiments revealed that gram-positive and gram-negative cells respond differently to freezing; these differences are discussed with reference to wall structure. It was apparent that the cells frozen first (ie., the first to contact the cryogen) retained the highest percentage of all radioisotopes, and the highest level of cellular infrastructure, indicative of better preservation. The preservation of these select cells was far superior to that obtained by more conventional techniques.  相似文献   

17.
When the thyroglobulin content is subtracted, actin represents approximately 4.6% of the total protein content in the hog thyroid gland. Actin has been isolated from acetone-dehydrated slices and purified to homogeneity by gel filtration, DEAE-cellulose chromatography and two polymerization-depolymerization cycles. Purified actin (Mr = 42000) contains the beta and gamma species with a 2 to 1 stoichiometry. In the presence of 0.1 M KCl and 2 mM MgCl2 thyroid actin polymerized into 6 nm diameter filaments; under these conditions the critical concentration was 30 micrograms/ml and the intrinsic viscosity 4.7 dl/g.  相似文献   

18.
Takeba  Go 《Plant & cell physiology》1984,25(2):239-247
Gibberellic acid (GA) increased glutamine synthetase (GS) activityduring imbibition by lettuce seeds. The effect of GA was moreremarkable in the dark than under red light. The increase inGS activity induced by GA was inhibited completely by cycloheximide(1 mM). No promotive effect of GA on dark germination was observedin the presence of L-methionine-DL-sulfoximine, a specific inhibitorof GS. Therefore, GA has its promotive effect on the dark germinationof lettuce seeds mainly through GS activity. The GS activitypresent in the embryonic axes of Grand Rapids seeds was abouthalf that in New York 515 Improved, also the promotive effectof GA on dark germination was lower in Grand Rapids. This differencebetween dark germination in the New York and Grand Rapids seedswas interpreted as being the difference in the amount of GSactivity in the embryonic axes of the dry seeds. (Received September 29, 1983; Accepted November 29, 1983)  相似文献   

19.
Several complex mechanisms contribute to the maintenance of the intricate ramified morphology of glomerular podocytes and to interactions with neighboring cells and the underlying basement membrane. Recently, components of small molecule transporter families have been found in the podocyte membrane, but expression and function of membrane transporters in podocytes is largely unexplored. To investigate this complex field of investigation, we used two molecules which are known substrates of membrane transporters, namely Penicillin G and Puromycin Aminonucleoside (PA).We observed that Penicillin G pre-administration prevented both in vitro and in vivo podocyte damage caused by PA, suggesting the engagement of the same membrane transporters by the two molecules. Indeed, we found that podocytes express a series of transporters which are known to be used by Penicillin G, such as members of the Organic Anion Transporter Polypeptides (OATP/Oatp) family of influx transporters, and P-glycoprotein, a member of the MultiDrug Resistance (MDR) efflux transporter family.Expression of OATP/Oatp transporters was modified by PA treatment. Similarly, in vitro PA treatment increased mRNA and protein expression of P-glycoprotein, as well as its activity, confirming the engagement of the molecule upon PA administration.In summary, we have characterized some of the small molecule transporters present at the podocyte membrane, focusing on those used by PA to enter and exit the cell. Further investigation will be needed to understand precisely the role of these transporter families in maintaining podocyte homeostasis and in the pathogenesis of podocyte injury.  相似文献   

20.
The denuded basal cell layer of the hairless mouse epidermis is described in the present scanning (SEM) and transmission electron microscopical (TEM) study. The suprabasal layers were removed mechanically after trypsinization or by extracellular calcium depletion. Trypsinization before removal of the suprabasal cells caused the basal cells to shrink. Characteristic surface plication and hemi-desmosomal attachment to the basement membrane were generally preserved. SEM revealed partly maintained intercellular bridging, whereas by TEM such contacts were absent because half desmosomes were internalized. Total calcium depletion induced more serious damage to the basal cell surface, which was smooth with apparent perforations. However, cell bridges, and occasional desmosomes were present. The cell interior demonstrated important cellular injury. If the calcium deprived explants were allowed to recover in calcium-containing medium, the cells acquired an activated "regenerative" morphology, without junctions, similar to that observed in wound healing. Epidermal non-keratinocytes were seen only after trypsinization. Control experiments revealed that they adapted poorly to organ culture conditions. By TEM, we observed several interesting aspects of the differences, between dark and clear basal keratinocytes. This was unexpected because fixation studies had shown, that with the present fixation method, typical dark and clear cells do not occur in untreated epidermis. We believe that membrane injury through mechanical stripping of partly adhering epidermal layers induced "clear cells", whereby the neighboring cells appeared darker. This provides additional evidence as to the origin of the two sub-populations, dark and clear basal cells. The clear cells may be injured cells, caused by cell damage, and not by processes of cellular differentiation. The results of the present investigation supports the view that basal keratinocytes have a polygonal shape with numerous free surface extensions and they are anchored to the basement membrane with "foot pads". Our study also shows that SEM of the epidermal basal layer might be feasible. Various artifacts, however, must be considered, depending on the denudation method used. We prefer trypsinization to calcium depletion because it is less time-consuming and results in a cell morphology which in TEM is comparable to that of basal cells in untreated whole epidermis. Extra-cellular calcium depletion, however, might be useful as a method to prepare single cell suspensions for flow cytometry. Restoration of a normal calcium concentration after stripping, provides an opportunity to mimic wound healing in situ, as an alternative t  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号