首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), are involved in many signaling pathways and diverse cellular functions. In an attempt to elucidate downstream effectors of Galpha(12) for cellular functions, we have performed a yeast two-hybrid screening of a rat brain cDNA library and revealed that Ser/Thr protein phosphatase type 5 (PP5) is a novel effector of Galpha(12) and Galpha(13). PP5 is a newly identified phosphatase and consists of a C-terminal catalytic domain and an N-terminal regulatory tetratricopeptide repeat (TPR) domain [2]. Arachidonic acid was recently shown to activate PP5 phosphatase activity by binding to its TPR domain, however the precise regulatory mechanism of PP5 phosphatase activity is not fully determined. In this study, we show that active forms of Galpha(12) and Galpha(13) specifically interact with PP5 through its TPR domain and activate its phosphatase activity about 2.5-fold. Active forms of Galpha(12) and Galpha(13) also enhance the arachidonic acid-stimulated PP5 phosphatase activity about 2.5-fold. Moreover, we demonstrate that the active form of Galpha(12) translocates PP5 to the cell periphery and colocalizes with PP5. These results propose a new signaling pathway of G(12) family G proteins.  相似文献   

2.
The sequential binding of different tetratricopeptide repeat (TPR) proteins to heat shock protein 90 (hsp90) is essential to its chaperone function in vivo. We have previously shown that three basic residues in the TPR domain of PP5 are required for binding to the acidic C-terminal domain of hsp90. We have now tested which acidic residues in this C-terminal domain are required for binding to three different TPR proteins as follows: PP5, FKBP52, and Hop. Mutation of Glu-729, Glu-730, and Asp-732 at the C terminus of hsp90 interfered with binding of all three TPR proteins. Mutation of Glu-720, Asp-722, Asp-723, and Asp-724 inhibited binding of FKBP52 and PP5 but not of Hop. Mutation of Glu-651 and Asp-653 did not affect binding of FKBP52 or PP5 but inhibited both Hop binding and hsp90 chaperone activity. We also found that a conserved Lys residue required for PP5 binding to hsp90 was critical for the binding of FKBP52 but not for the binding of Hop to hsp90. These results suggest distinct but overlapping binding sites on hsp90 for different TPR proteins and indicate that the binding site for Hop, which is associated with hsp90 in intermediate stages of protein folding, overlaps with a site of chaperone activity.  相似文献   

3.
This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.  相似文献   

4.
Protein phosphatase 5 (PP5) is an evolutionary conserved serine/threonine phosphatase. Its dephosphorylation activity modulates a diverse set of cellular factors including protein kinases and the microtubule-associated tau protein involved in neurodegenerative disorders. It is auto-regulated by its heat-shock protein (Hsp90)-interacting tetratricopeptide repeat (TPR) domain and its C-terminal α-helix. In the present study, we report the identification of five specific PP5 activators [PP5 small-molecule activators (P5SAs)] that enhance the phosphatase activity up to 8-fold. The compounds are allosteric modulators accelerating efficiently the turnover rate of PP5, but do barely affect substrate binding or the interaction between PP5 and the chaperone Hsp90. Enzymatic studies imply that the compounds bind to the phosphatase domain of PP5. For the most promising compound crystallographic comparisons of the apo PP5 and the PP5–P5SA-2 complex indicate a relaxation of the auto-inhibited state of PP5. Residual electron density and mutation analyses in PP5 suggest activator binding to a pocket in the phosphatase/TPR domain interface, which may exert regulatory functions. These compounds thus may expose regulatory mechanisms in the PP5 enzyme and serve to develop optimized activators based on these scaffolds.  相似文献   

5.
Endogenous and overexpressed protein phosphatase 5 (PP5) localizes to the nucleus and cytoplasm of HeLa cells, while the overexpressed TPR domain of PP5 is restricted to the cytoplasm. Deletion and mutational analysis of human PP5 demonstrates that the C-terminal amino acids 420-499 are essential for nuclear localization and PP5 activity is not required. Since the phosphatase domain terminates at 473, these studies suggest that the highly conserved section (476-491) with the eukaryotic consensus FXAVPHPXPhiXPMAYAN is required for nuclear localization of PP5. Bacterially expressed PP5 is inhibited by several tumor promoters but not by the anticancer drug fostriecin.  相似文献   

6.
Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.  相似文献   

7.
Ramsey AJ  Chinkers M 《Biochemistry》2002,41(17):5625-5632
The protein serine/threonine phosphatase designated PP5 has little basal activity, and physiological activators of the enzyme have never been identified. Purified PP5 can, however, be activated by partial proteolysis or by the binding of supraphysiological concentrations of polyunsaturated long-chain fatty acids to its tetratricopeptide repeat (TPR) domain. To test whether activation of PP5 by polyunsaturated but not saturated fatty acids was an artifact of the lower solubility of saturated fatty acids, the effects of fatty acyl-CoA esters were examined. Saturated and unsaturated long-chain fatty acids are both freely water-soluble when esterified to CoA. Long-chain fatty acyl-CoA esters activated PP5 at physiological concentrations, with the saturated compounds being more effective. We investigated the effects of chain length and of the CoA moiety on PP5 activation. Chains of 16 carbons or more were required for optimal activation, with no activation observed below 10 carbons. On the basis of competition studies using acetyl-CoA, the function of the CoA moiety appeared to be to increase solubility of the fatty acyl moiety rather than to interact with a specific binding site. These data suggested that long-chain fatty acid-CoA esters might be physiological activators of PP5 and point to a potential link between fatty acid metabolism and signal transduction via this enzyme. Because heat shock protein 90 is also known to bind to the TPR domain of PP5 via its C-terminal domain (C90), we investigated its effect on PP5 activity. C90 activated the enzyme approximately 10-fold. Thus, we have identified two potential physiological activators of PP5.  相似文献   

8.
9.
Cope DL  Lee S  Melvin DR  Gould GW 《FEBS letters》2000,481(3):261-265
The insulin-responsive glucose transporter, Glut4, exhibits a unique subcellular distribution such that in the absence of insulin >95% of the protein is stored within intracellular membranes. In response to insulin, Glut4 exhibits a large mobilisation to the plasma membrane. Studies of the amino acid motifs which regulate the unique trafficking of Glut4 have identified several key residues within the soluble cytoplasmic N- and C-terminal domains of Glut4. Of particular note is a Leu-498Leu-499 motif within the C-terminal domain that has been proposed to regulate both internalisation from the plasma membrane and sorting to an insulin-sensitive compartment. In this study, we have examined the role of the adjacent amino acids (Glu-491, Gln-492 and Glu-493) by their sequential replacement with Ala. Our results are consistent with the notion that Glu-491 and Glu-493 play an important role in the sub-endosomal trafficking of Glut4, as substitution of these residues with Ala results in increased levels of these proteins at the cell surface, reduced insulin-stimulated translocation and increased susceptibility to endosomal ablation. These residues, together with other identified sequences within the C-terminus of Glut4, are likely to be crucial targeting elements that regulate Glut4 subcellular distribution.  相似文献   

10.
The sequential binding of heat shock protein 90 (hsp90) to a series of tetratricopeptide repeat (TPR) proteins is critical to its function as a molecular chaperone. We have used site-directed mutagenesis to clarify the structural basis for the binding of hsp90 to the TPR domain of phosphoprotein phosphatase 5 (PP5). This TPR domain was chosen for study because its three-dimensional structure is known. We examined co-immunoprecipitation of hsp90 with wild type and mutant TPR constructs from transfected cells. Only mutations located on one face of the TPR domain affected hsp90 binding. This allowed the identification of a binding groove. Three basic residues that are highly conserved in hsp90-binding TPR proteins extend prominently into this groove. Lys-97 and Arg-101 were absolutely required for hsp90 binding, while mutation of Arg-74 diminished, but did not abrogate, hsp90 binding. Mutation of Lys-32, another conserved basic residue in the binding groove, also blocked hsp90 binding. The TPR domain of PP5 bound specifically to a 12-kDa C-terminal fragment of hsp90. This binding was reduced by mutation of acidic residues in the hsp90 fragment. These data suggest conservation, among hsp90-binding TPR proteins, of a binding groove containing basic residues that interact with acidic residues near the C terminus of hsp90.  相似文献   

11.
S Meek  N Morrice  C MacKintosh 《FEBS letters》1999,457(3):494-498
Proteins of approximately 35, 55 and 65kDa were purified from cauliflower extracts by microcystin-Sepharose chromatography and identified by amino acid sequencing as plant forms of protein (serine/threonine) phosphatase 1 (PP1) catalytic subunit, PP5 and a regulatory A-subunit of PP2A, respectively. Peptides that corresponded both to the tetratricopeptide (TPR) repeat and catalytic domains of PP5 were identified. Similar to mammalian PP5,the casein phosphatase activity of plant PP5 was activated >10-fold by arachidonic acid, with half-maximal stimulation occurring at approximately 100 microM lipid.  相似文献   

12.
13.
Human heparan sulphate N-deacetylase/N-sulphotransferase 1 sulphates the NH(3) (+) group of the glucosamine moiety of the heparan chain in heparan sulphate/heparin biosynthesis. An open cleft that runs perpendicular to the sulphate donor 3'-phosphoadenosine 5'-phosphosulphate may constitute the acceptor substrate-binding site of the sulphotransferase domain (hNST1) [Kakuta, Sueyoshi, Negishi and Pedersen (1999) J. Biol. Chem. 274, 10673-10676]. When a hexasaccharide model chain is docked into the active site, only a trisaccharide (-IdoA-GlcN-IdoA-) portion interacts directly with the cleft residues: Trp-713, His-716 and His-720 from alpha helix 6, and Phe-640, Glu-641, Glu-642, Gln-644 and Asn-647 from random coil (residues 640-647). Mutation of these residues either abolishes or greatly reduces hNST1 activity. Glu-642 may play the critical role of catalytic base in the sulphuryl group transfer reaction, as indicated by its hydrogen-bonding distance to the NH(3) (+) group of the glucosamine moiety in the model and by mutational data.  相似文献   

14.
Protein phosphatase 5 (PP5) is auto-inhibited by intramolecular interactions with its tetratricopeptide repeat (TPR) domain. Hsp90 has been shown to bind PP5 to activate its phosphatase activity. However, the functional implications of binding Hsp70 to PP5 are not yet clear. In this study, we find that both Hsp90 and Hsp70 bind to PP5 using a luciferase fragment complementation assay. A fluorescence polarization assay shows that Hsp90 (MEEVD motif) binds to the TPR domain of PP5 almost 3-fold higher affinity than Hsp70 (IEEVD motif). However, Hsp70 binding to PP5 stimulates higher phosphatase activity of PP5 than the binding of Hsp90. We find that PP5 forms a stable 1:1 complex with Hsp70, but the interaction appears asymmetric with Hsp90, with one PP5 binding the dimer. Solution NMR studies reveal that Hsc70 and PP5 proteins are dynamically independent in complex, tethered by a disordered region that connects the Hsc70 core and the IEEVD-TPR contact area. This tethered binding is expected to allow PP5 to carry out multi-site dephosphorylation of Hsp70-bound clients with a range of sizes and shapes. Together, these results demonstrate that Hsp70 recruits PP5 and activates its phosphatase activity which suggests dual roles for PP5 that might link chaperone systems with signaling pathways in cancer and development.  相似文献   

15.
Placenta growth factor (PlGF) belongs to the vascular endothelial growth factor (VEGF) family and represents a key regulator of angiogenic events in pathological conditions. PlGF exerts its biological function through the binding and activation of the seven immunoglobulin-like domain receptor Flt-1, also known as VEGFR-1. Here, we report the first detailed mutagenesis studies that provide a basis for understanding molecular recognition between PlGF-1 and Flt-1, highlighting some of the residues that are critical for receptor recognition. Mutagenesis analysis, performed on the basis of a structural model of interaction between PlGF and the minimal binding domain of Flt-1, has led to the identification of several PlGF-1 residues involved in Flt-1 recognition. The two negatively charged residues, Asp-72 and Glu-73, located in the beta3-beta4 loop, are critical for Flt-1 binding. Other mutations, which bring about a significant decrease in PlGF binding activity, are Gln-27, located in the N-terminal alpha-helix, and Pro-98 and Tyr-100 on the beta6 strand. The mutation of one of the two glycosylated residues of PlGF, Asn-84, generates a PlGF variant with reduced binding activity. This indicates that, unlike in VEGF, glycosylation plays an important role in Flt-1 binding. The double mutation of residues Asp-72 and Glu-73 generates a PlGF variant unable to bind and activate the receptor molecules on the cell surface. This variant failed to induce in vitro capillary-like tube formation of primary endothelial cells or neo-angiogenesis in an in vivo chorioallantoic membrane assay.  相似文献   

16.
A full-length cDNA clone encoding bovine pancreatic preprocarboxypeptidase A was isolated and sequenced. The 1405-base pair insert contains a 26-nucleotide 5'-noncoding region, a 1260-nucleotide open reading frame and a 76-nucleotide 3'-noncoding fragment plus a poly(A) tail of at least 43 nucleotides. The open reading frame encodes a protein of 419 amino acids, including the 16 amino acid signal peptide. The mature enzyme (309 residues) has two additional C-terminal amino acids, as compared with the amino acid sequence of the protein which was reported more than 20 years ago. In addition, four residues deduced from the nucleotide sequence differed from those identified in the reported amino acid sequence from their net charge: Asp-89, Asp-114, Gln-122, and Asp-185 instead of Asn-89, Asn-114, Glu-122, and Asn-185, respectively. A high degree of identity exists between the nucleotide sequences (81.3%), on the one hand, and the amino acid sequences (78.3%), on the other hand, of bovine preprocarboxypeptidase A and rat preprocarboxypeptidase A1.  相似文献   

17.
A docking model of the alpha(2) I-domain and collagen has been proposed based on their crystal structures (Emsley, J., King, S., Bergelson, J., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517). In this model, several amino acid residues in the I-domain make direct contact with collagen (Asn-154, Asp-219, Leu-220, Glu-256, His-258, Tyr-285, Asn-289, Leu-291, Asn-295, and Lys-298), and the protruding C-helix of alpha(2) (residues 284-288) determines ligand specificity. Because most of the proposed critical residues are not conserved, different I-domains are predicted to bind to collagen differently. We found that deleting the entire C-helix or mutating the predicted critical residues had no effect on collagen binding to whole alpha(2)beta(1), with the exception that mutating Asn-154, Asp-219, and His-258 had a moderate effect. We performed further studies and found that mutating the conserved surface-exposed residues in the metal ion-dependent adhesion site (MIDAS) (Tyr-157 and Gln-215) significantly blocks collagen binding. We have revised the docking model based on the mutagenesis data. In the revised model, conserved Tyr-157 makes contact with collagen in addition to the previously proposed Asn-154, Asp-219, His-258, and Tyr-285 residues. These results suggest that the collagen-binding I-domains (e.g. alpha(1), alpha(2), and alpha(10)) bind to collagen in a similar fashion.  相似文献   

18.
The herpes simplex virus type 1 thymidine kinase (HSV-1 TK) is the major anti-herpes virus pharmacological target, and it is being utilized in combination with the prodrug ganciclovir as a toxin gene therapeutic for cancer. One active-site amino acid, glutamine-125 (Gln-125), has been shown to form hydrogen bonds with bound thymidine, thymidylate, and ganciclovir in multiple X-ray crystal structures. To examine the role of Gln-125 in HSV-1 TK activity, three site-specific mutations of this residue to an aspartic acid, an asparagine, or a glutamic acid were introduced. These three mutants and wild-type HSV-1 TK were expressed in E. coli and partially purified and their enzymatic properties compared. In comparison to the Gln-125 HSV-1 TK, thymidylate kinase activity of all three mutants was decreased by over 90%. For thymidine kinase activity relative to Gln-125 enzyme, the K(m) of thymidine increased from 0.9 microM for the parent Gln-125 enzyme to 3 microM for the Glu-125 mutant, to 6000 microM for the Asp-125 mutant, and to 20 microM for the Asn-125 mutant. In contrast, the K(m) of ganciclovir decreased from 69 microM for the parent Gln-125 enzyme to 50 microM for the Asn-125 mutant and increased to 473 microM for the Glu-125 mutant. The Asp-125 enzyme was able to poorly phosphorylate ganciclovir, but with nonlinear kinetics. Molecular simulations of the wild-type and mutant HSV-1 TK active sites predict that the observed activities are due to loss of hydrogen bonding between thymidine and the mutant amino acids, while the potential for hydrogen bonding remains intact for ganciclovir binding. When expressed in two mammalian cell lines, the Glu-125 mutant led to GCV-mediated killing of one cell line, while the Asn-125 mutant was equally as effective as wild-type HSV-1 TK in metabolizing GCV and causing cell death in both cell lines.  相似文献   

19.
E. coli F1-ATPase: site-directed mutagenesis of the beta-subunit   总被引:3,自引:0,他引:3  
Residues beta Glu-181 and beta Glu-192 of E. coli F1-ATPase (the DCCD-reactive residues) were mutated to Gln. Purified beta Gln-181 F1 showed 7-fold impairment of 'unisite' Pi formation from ATP and a large decrease in affinity for ATP. Thus the beta-181 carboxyl group in normal F1 significantly contributes to catalytic site properties. Also, positive catalytic site cooperativity was attenuated from 5 X 10(4)- to 548-fold in beta Gln-181 F1. In contrast, purified beta Gln-192 F1 showed only 6-fold reduction in 'multisite' ATPase activity. Residues beta Gly-149 and beta Gly-154 were mutated to Ile singly and in combination. These mutations, affecting residues which are strongly conserved in nucleotide-binding proteins, were chosen to hinder conformational motion in a putative 'flexible loop' in beta-subunit. Impairment of purified F1-ATPase ranged from 5 to 61%, with the double mutant F1 less impaired than either single mutant. F1 preparations containing beta Ile-154 showed 2-fold activation after release from membranes, suggesting association with F0 restrained turnover on F1 in these mutants.  相似文献   

20.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号