首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein Ser/Thr phosphatase 5 is a 58-kDa protein containing a catalytic domain structurally related to the catalytic subunits of protein phosphatases 1, 2A, and 2B and an extended N-terminal domain with three tetratricopeptide repeats. The activity of this enzyme is stimulated 4-14-fold in vitro by polyunsaturated fatty acids and anionic phospholipids. The structural basis for lipid activation of protein phosphatase 5 was examined by limited proteolysis and site-directed mutagenesis. Trypsinolysis removed the tetratricopeptide repeat domain and increased activity to approximately half that of lipid-stimulated, full-length enzyme. Subtilisin removed the tetratricopeptide repeat domain and 10 residues from the C terminus, creating a catalytic fragment with activity that was equal to or greater than that of lipid-stimulated, full-length enzyme. Catalytic fragments generated by proteolysis were no longer stimulated by lipid, and degradation of the tetratricopeptide repeat domain was decreased by association with lipid. A truncated mutant missing 13 C-terminal residues was also insensitive to lipid and was as active as full-length, lipid-stimulated enzyme. These results suggest that the C-terminal and N-terminal domain act in a coordinated manner to suppress the activity of protein phosphatase 5 and mediate its activation by lipid. These regions may be targets for the regulation of protein phosphatase 5 activity in vivo.  相似文献   

2.
We have previously reported that Monad, a novel WD40 repeat protein, potentiates apoptosis induced by tumor necrosis factor-alpha(TNF-alpha) and cycloheximide (CHX). By affinity purification and mass spectrometry, we identified RNA polymerase II-associated protein 3 (RPAP3) as a binding protein of Monad. Overexpression of RPAP3 in HEK 293 potentiated caspase-3 activation and apoptosis induced by TNF-alpha and CHX. In addition, knockdown of RPAP3 by RNA interference resulted in a significant reduction of apoptosis induced by TNF-alpha and CHX in HEK293 and HeLa cells. These results raise the possibility that RPAP3, together with Monad, may function as a novel modulator of apoptosis pathway.  相似文献   

3.
Tetratricopeptide repeat domain 9 (TTC9) mRNA was drastically up-regulated by progesterone in progesterone receptor-transfected breast cancer cells MDA-MB-231. This up-regulation is coupled with progesterone-mediated growth inhibition and induction of focal adhesion. We have generated mouse polyclonal antibody against a predicted 222 aa TTC9 protein and identified a 25 kDa TTC9 protein that is widely expressed in human tissues, with the highest expression in the brain. Immunostaining and cell fractionation studies revealed that TTC9 is predominantly localized to the endoplasmic reticulum. The level of TTC9 protein in MCF-7 cells is regulated by various factors and chemical reagents including estrogen, progesterone, growth factors, ICI182,780, and p38 kinase inhibitor SB203580. Growth factor-induced TTC9 protein expression was inhibited by estrogen and abolished by ERK inhibitor PD98059. Though the function of TTC9 is not yet clear, the susceptibility of its protein level to biological and chemical agents suggests that TTC9 is a biologically significant protein.  相似文献   

4.
5.
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, seems to be regulated through its binding to acidic phospholipids, such as cardiolipin. In our previous paper (Hase, M., Yoshimi, T., Ishikawa, Y., Ohba, A., Guo, L., Mima, S., Makise, M., Yamaguchi, Y., Tsuchiya, T., and Mizushima, T. (1998) J. Biol. Chem. 273, 28651-28656), we found that mutant DnaA protein (DnaA431), in which three basic amino acids (Arg(360), Arg(364), and Lys(372)) were mutated to acidic amino acids showed a decreased ability to interact with cardiolipin in vitro, suggesting that DnaA protein binds to cardiolipin through an ionic interaction. In this study, we construct three mutant dnaA genes each with a single mutation and examined the function of the mutant proteins in vitro and in vivo. All mutant proteins maintained activities for DNA replication and ATP binding. A mutant protein in which Lys(372) was mutated to Glu showed the weakest interaction with cardiolipin among these three mutant proteins. Thus, Lys(372) seems to play an important role in the interaction between DnaA protein and acidic phospholipids. Plasmid complementation analyses revealed that all these mutant proteins, including DnaA431 could function as an initiator for chromosomal DNA replication in vivo.  相似文献   

6.
The interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC, TFIIIC131, and the TFIIB-related factor Brf1 represents a limiting step in the assembly of the RNA polymerase III (pol III) initiation factor TFIIIB. This assembly reaction is facilitated by dominant mutations that map in and around TPR2. Structural modeling of TPR1 to TPR3 from TFIIIC131 shows that one such mutation, PCF1-2, alters a residue in the ligand-binding groove of the TPR superhelix whereas another mutation, PCF1-1, changes a surface-accessible residue on the back side of the TPR superhelix. In this work, we show that the PCF1-1 mutation (H190Y) increases the binding affinity for Brf1, but does not affect the binding affinity for Bdp1, in the TFIIIC-dependent assembly of TFIIIB. Interestingly, binding studies with TFIIIC131 fragments indicate that Brf1 does not interact directly at the site of the PCF1-1 mutation. Rather, the data suggest that the mutation overcomes the previously documented autoinhibition of Brf1 binding. These findings together with the results from site-directed mutagenesis support the hypothesis that gain-of-function mutations at amino acid 190 in TPR2 stabilize an alternative conformation of TFIIIC131 that promotes its interaction with Brf1.  相似文献   

7.
Kiani C  Chen L  Lee V  Zheng PS  Wu Y  Wen J  Cao L  Adams ME  Sheng W  Yang BB 《Biochemistry》2003,42(23):7226-7237
Members of the large aggregating chondroitin sulfate proteoglycans are characterized by an N-terminal fragment known as G1 domain, which is composed of an immunoglobulin (IgG)-like motif and two tandem repeats (TR). Previous studies have indicated that the expressed product of aggrecan G1 domain was not secreted. Here we demonstrated that the inability of G1 secretion was associated with the tandem repeats but not the IgG-like motif, and specifically with TR1 of aggrecan. We also demonstrated that the G2 domain, a domain unique to aggrecan, had a similar effect on product secretion. The sequence of TR1 of G1 is highly conserved across species, which suggested similar functions played by these motifs. In a yeast two-hybrid assay, TR1 interacted with the calcium homeostasis endoplasmic reticulum protein. Deletion/mutation experiments indicated that the N-terminal fragment of TR1, in particular, the amino acids H(2)R(4) of this motif were key to its effect on product secretion. However, the N-terminal 55 amino acids were required to exert this function. Taken together, our study suggests a possible molecular mechanism for the function of the tandem repeats in product processing.  相似文献   

8.

Background  

The malarial parasite, Plasmodium falciparum (Pf), is responsible for nearly 2 million deaths worldwide. However, the mechanisms of cellular signaling in the parasite remain largely unknown. Recent discovery of a few protein kinases and phosphatases point to a thriving reversible phosphorylation system in the parasite, although their function and regulation need to be determined.  相似文献   

9.
AGS3, a 650-amino acid protein encoded by an approximately 4-kilobase (kb) mRNA enriched in rat brain, is a Galpha(i)/Galpha(t)-binding protein that competes with Gbetagamma for interaction with Galpha(GDP) and acts as a guanine nucleotide dissociation inhibitor for heterotrimeric G-proteins. An approximately 2-kb AGS3 mRNA (AGS3-SHORT) is enriched in rat and human heart. We characterized the heart-enriched mRNA, identified the encoded protein, and determined its ability to interact with and regulate the guanine nucleotide-binding properties of G-proteins. Screening of a rat heart cDNA library, 5'-rapid amplification of cDNA ends, and RNase protection assays identified two populations of cDNAs (1979 and 2134 nucleotides plus the polyadenylation site) that diverged from the larger 4-kb mRNA (AGS3-LONG) in the middle of the protein coding region. Transfection of COS-7 cells with AGS3-SHORT cDNAs resulted in the expression of a major immunoreactive AGS3 polypeptide (M(r) approximately 23,000) with a translational start site at Met(495) of AGS3-LONG. Immunoblots indicated the expression of the M(r) approximately 23,000 polypeptide in rat heart. Glutathione S-transferase-AGS3-SHORT selectively interacted with the GDP-bound versus guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-bound conformation of Galpha(i2) and inhibited GTPgammaS binding to Galpha(i2). Protein interaction assays with glutathione S-transferase-AGS3-SHORT and heart lysates indicated interaction of AGS3-SHORT with Galpha(i1/2) and Galpha(i3), but not Galpha(s) or Galpha(q). Immunofluorescent imaging and subcellular fractionation following transient expression of AGS3-SHORT and AGS3-LONG in COS-7 and Chinese hamster ovary cells indicated distinct subcellular distributions of the two forms of AGS3. Thus, AGS3 exists as a short and long form, both of which apparently stabilize the GDP-bound conformation of Galpha(i), but which differ in their tissue distribution and trafficking within the cell.  相似文献   

10.
Structural uniqueness is characteristic of native proteins and is essential to express their biological functions. The major factors that bring about the uniqueness are specific interactions between hydrophobic residues and their unique packing in the protein core. To find the origin of the uniqueness in their amino acid sequences, we analyzed the distribution of the side chain rotational isomers (rotamers) of hydrophobic amino acids in protein tertiary structures and derived deltaS(contact), the conformational-entropy changes of side chains by residue-residue contacts in each secondary structure. The deltaS(contact) values indicate distinct tendencies of the residue pairs to restrict side chain conformation by inter-residue contacts. Of the hydrophobic residues in alpha-helices, aliphatic residues (Leu, Val, Ile) strongly restrict the side chain conformations of each other. In beta-sheets, Met is most strongly restricted by contact with Ile, whereas Leu, Val and Ile are less affected by other residues in contact than those in alpha-helices. In designed and native protein variants, deltaS(contact) was found to correlate with the folding-unfolding cooperativity. Thus, it can be used as a specificity parameter for designing artificial proteins with a unique structure.  相似文献   

11.
12.
Rapsyn, a 43-kDa peripheral membrane protein of skeletal muscle, is essential for clustering nicotinic acetylcholine receptors (nAChR) in the postsynaptic membrane. Previous studies with rapsyn NH(2)-terminal fragments fused to green fluorescent protein, expressed in 293T cells along with nAChRs, establish the following: Rapsyn-(1-90), containing the myristoylated amino terminus and two tetratricopeptide repeats (TPRs), was sufficient for self-association at the plasma membrane; rapsyn-(1-287), containing seven TPRs, did not cluster nAChRs; whereas rapsyn-(1-360)(,) containing a coiled-coil domain (rapsyn-(298-331)), clustered nAChRs. To further analyze the role of rapsyn structural domains in self-association and nAChR clustering, we have characterized the clustering properties of additional rapsyn mutants containing deletions and substitutions within the TPR and coiled-coil domains. A mutant lacking the coiled-coil domain alone (rapsyn-(black triangle288-348)), failed to cluster nAChRs. Within the coiled-coil domain neutralization of the charged side chains was tolerated, while alanine substitutions of large hydrophobic residues resulted in the loss of nAChR clustering. Rapsyn self-association requires at least two TPRs, as a single TPR (TPR1 or TPR2 alone) was not sufficient. While TPRs 1 and 2 are sufficient for self-association, they are not necessary, as TPRs 3-7 also formed clusters similar to wild-type rapsyn. Fragments containing TPRs co-localized with full-length rapsyn, while the expressed coiled-coil or RING-H2 domain did not. These results are discussed in terms of a homology model of rapsyn, based on the three-dimensional structure of the TPR domain of protein phosphatase 5.  相似文献   

13.
CDC23 is required in Saccharomyces cerevisiae for cell cycle progression through the G2/M transition. The CDC23 gene product contains tandem, imperfect repeats, termed tetratricopeptide repeats, (TPR) units common to a protein family that includes several other nuclear division CDC genes. In this report we have used mutagenesis to probe the functional significance of the TPR units within CDC23. Analysis of truncated derivatives indicates that the TPR block of CDC23 is necessary for the function or stability of the polypeptide. In-frame deletion of a single TPR unit within the repeat block proved sufficient to inactivate CDC23 in vivo, though this allele could rescue the temperature-sensitive defect of a cdc23 point mutant by intragenic complementation. By both in vitro and in vivo mutagenesis techniques, 17 thermolabile cdc23 alleles were produced and examined. Fourteen alleles contained single amino acid changes that were found to cluster within two distinct mutable domains, one of which encompasses the most canonical TPR unit found in CDC23. In addition, we have characterized CDC23 as a 62-kDa protein (p62cdc23) that is localized to the yeast nucleus. Our mutagenesis results suggest that TPR blocks form an essential domain within members of the TPR family.  相似文献   

14.
The light reactions of oxygenic photosynthesis are mediated by multisubunit pigment-protein complexes situated within the specialized thylakoid membrane system. The biogenesis of these complexes is regulated by transacting factors that affect the expression of the respective subunit genes and/or the assembly of their products. Here we report on the analysis of the PratA gene from the cyanobacterium Synechocystis sp. PCC 6803 that encodes a periplasmic tetratricopeptide repeat protein of formerly unknown function. Targeted inactivation of PratA resulted in drastically reduced photosystem II (PSII) content. Protein pulse labeling experiments of PSII subunits indicated that the C-terminal processing of the precursor of the reaction center protein D1 is compromised in the pratA mutant. Moreover, a direct interaction of PratA and precursor D1 was demonstrated by applying yeast two-hybrid analyses. This suggests that PratA represents a factor facilitating D1 maturation via the endoprotease CtpA. The periplasmic localization of PratA supports a model that predicts the initial steps of PSII biogenesis to occur at the plasma membrane of cyanobacterial cells.  相似文献   

15.
The abundant and dynamic post-translational modification of nuclear and cytosolic proteins by beta-O-linked N-acetylglucosamine (O-GlcNAc) is catalyzed by O-GlcNAc-transferase (OGT). Recently, we reported the identification of a novel family of OGT-interacting proteins (OIPs) that interact strongly with the tetratricopeptide repeat (TPR) domain of OGT (Iyer, S. P., Akimoto, Y., and Hart, G. W. (2003) J. Biol. Chem. 278, 5399-5409). Members of this family are modified by O-GlcNAc and are excellent substrates of OGT. Here, we further investigated the role of the TPR domain in the O-GlcNAcylation of OIP106, one of the members of this OIP family. Using N-terminal deletions, we first identified the region of OIP106 that binds OGT, termed the OGT-interacting domain (OID). Deletion analysis indicated that TPRs 2-6 of OGT interact with the OID of OIP106. The apparent Km of OGT for the OID of OIP106 is 3.35 microm. Unlike small peptide substrates, glycosylation of the OID was dependent upon its interaction with the first 6 TPRs of OGT. Furthermore, the isolated TPR domain of OGT competitively inhibited glycosylation of the OID protein, but did not inhibit glycosylation of a 12-amino acid casein kinase II peptide substrate, providing kinetic evidence for the role of the TPR domain as a protein substrate docking site. Additionally, both the OID of OIP106 and nucleoporin p62 competed with each other for glycosylation by OGT. These studies support the model that the catalytic subunit of OGT achieves both high specificity and a remarkable diversity of substrates by complexing with a variety of targeting proteins via its TPR protein-protein interaction domains.  相似文献   

16.
ApoAV, a newly discovered apolipoprotein, plays a key role in human triglyceride homeostasis; however, the structure-function correlation of apoAV is not clearly understood. To explore the relationship, wild type and six deletion mutants, that is (AV (Delta(1-51)), AV (Delta(51-128)), AV (Delta(132-188)), AV (Delta(192-238)), AV (Delta(246-299)), AV (Delta(301-343))), of human apoAV expressed in Escherichia coli were studied. All the deleted regions together encompass almost the entire 343 amino acid sequence of wild type apoAV. Circular dichroism spectroscopy showed that the alpha helical content of lipid-free wild type apoAV was 46%. In comparison with wild type apoAV, AV (Delta(192-238)) and AV (Delta(301-343)) displayed significantly decreased lipid binding activities, confirming the importance of these two regions in lipid binding function of apoAV. While, the LPL activation function of apoAV remarkably impaired after deletion of residues 192-238. These findings suggested that the domain (192-238) is absolutely necessary for apoAV in lipid binding and lipoprotein lipase activation.  相似文献   

17.
18.
19.
The sequential binding of different tetratricopeptide repeat (TPR) proteins to heat shock protein 90 (hsp90) is essential to its chaperone function in vivo. We have previously shown that three basic residues in the TPR domain of PP5 are required for binding to the acidic C-terminal domain of hsp90. We have now tested which acidic residues in this C-terminal domain are required for binding to three different TPR proteins as follows: PP5, FKBP52, and Hop. Mutation of Glu-729, Glu-730, and Asp-732 at the C terminus of hsp90 interfered with binding of all three TPR proteins. Mutation of Glu-720, Asp-722, Asp-723, and Asp-724 inhibited binding of FKBP52 and PP5 but not of Hop. Mutation of Glu-651 and Asp-653 did not affect binding of FKBP52 or PP5 but inhibited both Hop binding and hsp90 chaperone activity. We also found that a conserved Lys residue required for PP5 binding to hsp90 was critical for the binding of FKBP52 but not for the binding of Hop to hsp90. These results suggest distinct but overlapping binding sites on hsp90 for different TPR proteins and indicate that the binding site for Hop, which is associated with hsp90 in intermediate stages of protein folding, overlaps with a site of chaperone activity.  相似文献   

20.
The biological functions of heterotrimeric G proteins and small GTPases are modulated by both extracellular stimuli and intracellular regulatory proteins. Using Saccharomyces cerevisiae two-hybrid screening, we identified tetratricopeptide repeat 1 (TPR1), a 292-amino-acid protein with three TPR motifs, as a Galpha16-binding protein. The interaction was confirmed both in vitro and in transfected mammalian cells, where TPR1 also binds to several other Galpha proteins. TPR1 was found to interact with Ha-Ras preferentially in its active form. Overexpression of TPR1 promotes accumulation of active Ras. TPR1 was found to compete with the Ras-binding domain (RBD) of Raf-1 for binding to the active Ras, suggesting that it may also compete with Ras GTPase-activating protein, thus contributing to the accumulation of GTP-bound Ras. Expression of Galpha16 strongly enhances the interaction between TPR1 and Ras. Removal of the TPR1 N-terminal 112 residues abolishes potentiation by Galpha16 while maintaining the interaction with Galpha16 and the ability to discriminate active Ras from wild-type Ras. We have also observed that LGN, a Galphai-interacting protein with seven TPR motifs, binds Ha-Ras. Thus, TPR1 is a novel adaptor protein for Ras and selected Galpha proteins that may be involved in protein-protein interaction relating to G-protein signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号