首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zamora S  Rahman IA  Smith AB 《PloS one》2012,7(6):e38296
Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta. This provides a root for all echinoderms and confirms that the earliest members were deposit feeders not suspension feeders.  相似文献   

3.
4.

Background  

The skeletal elements of vertebrate embryonic limbs are prefigured by rod- and spot-like condensations of precartilage mesenchymal cells. The formation of these condensations depends on cell-matrix and cell-cell interactions, but how they are initiated and patterned is as yet unresolved.  相似文献   

5.
Background  The FOXP3 mRNA expression and the other regulatory T cell-related molecules were investigated and compared with clinicopathological parameters in human primary breast cancer. Method  This study included 136 breast cancer patients operated in our department from 2003 to 2006. Total RNA was extracted from frozen normal breast and breast cancer tissues, and the expression of FOXP3, IL-10, TGFβ1 and CCL22 mRNA was evaluated using quantitative real-time RT-PCR. Result   FOXP3, IL-10, TGFβ1 and CCL22 mRNA expressions were significantly higher in cancer tissue than in normal tissue, not only at pT1, 2, and 3 stages but also at the DCIS stage. There were positive correlations between FOXP3 and IL-10, FOXP3 and TGFβ1, as well as FOXP3 and CCL22 mRNA expressions, respectively. FOXP3 and IL-10 mRNA expressions were significantly upregulated in PgR-negative or HER2-positive tumors. Conclusion  These results suggest that regulatory T cells are involved in tumor onset and progression in human primary breast cancer, possibly contributing to poor prognosis of patients with breast cancer.  相似文献   

6.
The early stages of tumor progression were modelled by intraperitoneally injecting BALB/c mice daily with exponentially increasing numbers of mitomycin C-treated, syngeneic MPC-11 tumor cells. At various stages of this regime, mesenteric lymph node (MLN) and spleen cells were assessed for regulatory activity on the induction of cytotoxic T lymphocytes (CTL) in vitro. Cells present in both MLN and spleens of mice whose daily tumor dose had reached 102,400 MPC-11 cells impaired the generation of CTL specific for MPC-11 and specific for oncofetal antigen(s) shared between MPC-11 and Day 14-15 syngeneic fetal liver cells. Depletion of Thy-1+ cells from the regulatory cell populations removed the suppressive activity. The regulatory cells did not affect the induction of CTL specific for H-2b antigens in the context of H-2d (i.e., BALB/c) class I MHC.  相似文献   

7.
8.
9.
H Q Miao  P Lee  H Lin  S Soker  M Klagsbrun 《FASEB journal》2000,14(15):2532-2539
Neuropilin-1 (NRP1) is a VEGF(165) and semaphorin receptor expressed by vascular endothelial cells (EC) and tumor cells. The function of NRP1 in tumor cells is unknown. NRP1 was overexpressed in Dunning rat prostate carcinoma AT2.1 cells using a tetracycline-inducible promoter. Concomitant with increased NRP1 expression in response to a tetracycline homologue, doxycycline (Dox), basal cell motility, and VEGF(165) binding were increased three- to fourfold in vitro. However, induction of NRP1 did not affect tumor cell proliferation. When rats injected with AT2.1/NRP1 tumor cells were fed Dox, NRP1 synthesis was induced in vivo and AT2.1 cell tumor size was increased 2.5- to 7-fold in a 3-4 wk period compared to controls. The larger tumors with induced NRP1 expression were characterized by markedly increased microvessel density, increased proliferating EC, dilated blood vessels, and notably less tumor cell apoptosis compared to noninduced controls. It was concluded that NRP1 expression results in enlarged tumors associated with substantially enhanced tumor angiogenesis.  相似文献   

10.
11.
During tumor progression, the extracellular matrix (ECM) and particularly the basement membrane (BM) appear to be dynamic structures that are not only degraded but also deposited around tumor clusters. In this study we examined by immunohistochemistry the localization of three chains of Type IV collagen (alpha1, alpha3 and alpha5), Type VII collagen, and laminin 5 at different stages of bronchopulmonary cancers. In normal tissues, alpha1(IV) chain was detected in all BMs (bronchial, vascular, alveolar, and glandular), alpha5(IV) chain was present only in vascular BM, and laminin 5 and Type VII collagen were co-localized in bronchial and glandular BMs, whereas alpha3(IV) immunolabeling was totally absent from normal bronchi. In well-differentiated carcinomas, alpha3(IV) chain staining was found in some neosynthetized BMs interfacing the tumor cell and the stromal compartment, contrasting with the total absence of labeling in normal tissues. alpha1(IV) chain showed strong reactivity in all BM. Laminin 5 and Type VII collagen were also detected in neosynthetized BM. In poorly differentiated invasive cancers, alpha3(IV) chain and Type VII collagen were not found, whereas laminin 5 and alpha1(IV) chain persisted. The most important modifications in BM composition during tumor progression therefore appear to be the appearance of the alpha3 (IV) chain in well-differentiated carcinomas and its subsequent disappearance in poorly differentiated carcinomas, together with the loss of type VII collagen. alpha5(IV) chain distribution was restricted in vascular BM of well- and poorly differentiated carcinomas. These results show that the composition of BM is modified during the progression of bronchopulmonary tumor, emphasizing that the BM represents a dynamic element in tumor progression and has an important role in tumor cell invasiveness.  相似文献   

12.
Zinc homeostasis was studied during the induction, growth, and methotrexate (MTX) treatment of Dark Agouti rat mammary adenocarcinomas (DAMA). A progressive fall in plasma Zn concentration (pZn), significant at a tumor burden of less than 1% body weight (bw), was sustained during tumor enlargement to give a 54% reduction in pZn at 16.3% bw (n=6/group). The hypozincemia was attributed to the increasing Zn demand for tumor growth. Zn content of the 16.3% bw tumors equaled that of muscle (normally 60% of total body Zn). Tumor metallothionein (tMT) was sufficient to bind <3% of total tumor Zn, and hepatic MT (hMT) remained at basal concentrations during early tumor growth, doubling only in the presence of significant necrosis in large tumors. Methotrexate (MTX, 0.5 mg/Kg im x 2 d) at respective tumor burdens of 5 and 10% bw (n=9, 10/group) gave 2 therapeutic effects, dependent on tumor size: 1.5% bw tumors in 7 rats remained close to their original size until experiment end when pZn, hMT, and tMT were typical of 5% bw untreated tumors. 2. Tumors in 5 rats given MTX at 10% bw had marked subcapsular necrosis and regression to a size similar to those in group 1; pZn returned toward normal, whereas hMT was 6 times its 5% bw counterpart. Host weight loss was significantly reduced, as were tumor-associated changes in plasma glucose and calcium. In summary, neither tMT nor hMT appears to play a role in the hypozincemia that follows DAMA Zn sequestration and growth. Critically timed MTX can result in tumor regression and return of plasma Zn, Ca, and glucose toward normal. This is associated with an increase in hMT and reduction in host weight loss, suggesting a flow of Zn from the resorbing tumor to the host, enabling the synthesis of hMT and retention of host structural proteins.  相似文献   

13.
Two major mechanisms regulating cholesterol biosynthesis exist in a human renal cancer cell line, Caki-1. Caki-1 is a newly established cell line whose characteristics of rapid growth and active cholesterol synthesis qualify it as a potentially valuable tool for elucidation of regulatory mechanism of cholesterol synthesis and transport. In the absence of exogenous cholesterol, cholesterol is the dominant sterol arising from labeled acetate and mevalonate. As expected, in the presence of exogenous cholesterol, the conversion of acetate to cholesterol and the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34) is markedly reduced and this inhibition is released when cholesterol is removed from the medium. An unexpected and possibly unique finding is the inhibition of the conversion of mevalonate to cholesterol in the presence of exogenous cholesterol. This second major control process results in the accumulation of squalene and may involve additional late steps in cholesterol biosynthesis or metabolism. The occurrence of two major mechanisms regulating cholesterol synthesis may be a unique property of renal cancer cells or a previously unrecognized characteristic of a variety of cultured cells.  相似文献   

14.
Gao X  Zhu Y  Li G  Huang H  Zhang G  Wang F  Sun J  Yang Q  Zhang X  Lu B 《PloS one》2012,7(2):e30676

Background

T cell immunoglobulin-3 (TIM-3) has been established as a negative regulatory molecule and plays a critical role in immune tolerance. TIM-3 is upregulated in exhausted CD8+ T cells in both chronic infection and tumor. However, the nature of TIM-3+CD4+ T cells in the tumor microenvironment is unclear. This study is to characterize TIM-3 expressing lymphocytes within human lung cancer tissues and establish clinical significance of TIM-3 expression in lung cancer progression.

Methodology

A total of 51 human lung cancer tissue specimens were obtained from pathologically confirmed and newly diagnosed non-small cell lung cancer (NSCLC) patients. Leukocytes from tumor tissues, distal normal lung tissues, and peripheral blood mononuclear cells (PBMC) were analyzed for TIM-3 surface expression by flow cytometry. TIM-3 expression on tumor-infiltrating lymphocytes (TILs) was correlated with clinicopathological parameters.

Conclusions

TIM-3 is highly upregulated on both CD4+ and CD8+ TILs from human lung cancer tissues but negligibly expressed on T cells from patients'' peripheral blood. Frequencies of IFN-γ+ cells were reduced in TIM-3+CD8+ TILs compared to TIM-3CD8+ TILs. However, the level of TIM-3 expression on CD8+ TILs failed to associate with any clinical pathological parameter. Interestingly, we found that approximately 70% of TIM-3+CD4+ TILs expressed FOXP3 and about 60% of FOXP3+ TILs were TIM-3+. Importantly, TIM-3 expression on CD4+ T cells correlated with poor clinicopathological parameters of NSCLC such as nodal metastasis and advanced cancer stages. Our study reveals a new role of TIM-3 as an important immune regulator in the tumor microenvironment via its predominant expression in regulatory T cells.  相似文献   

15.
RT-PCR analysis showed elevated expression of 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-OHase) and of 25-hydroxyvitamin D-24-hydroxylase (24-OHase) in well differentiated human colon carcinomas in comparison to normal mucosa. Further tumor progression is associated with a rise in 1alpha-OHase but with no significant change in 24-OHase mRNA expression. Accordingly, HPLC analysis of 25-hydroxy-vitamin D3 metabolism in freshly isolated tumor cells indicated that well to moderately differentiated colon cancers in situ are able to produce 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3) and convert it through 24-OHase activity into side-chain modified metabolites, 1,24,25-(OH)3-D3 and 1,25-(OH)2- 24-oxo-D3. Likewise, 25-(OH)-D3 is metabolized into 24,25-(OH)2D3, 23,25-(OH)2D3, and 23,25-(OH)2-24-oxo-D3. Poorly-differentiated cancers expressed low levels of 1alpha-OHase mRNA, whereas 24-OHase was even over-expressed. RT-PCR and HPLC analysis of vitamin D metabolism in primary culture cell clones strongly suggested that the extent of endogenously produced 1alpha,25-(OH)2-D3 was inversely related to 24-OHase activity, which could thus limit the antimitotic efficacy of 1alpha,25-(OH)2-D3 particularly at late stages of colon cancer progression.  相似文献   

16.
17.

Background

Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration.

Methodology/Principal Findings

We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling.

Conclusions/Significance

These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis.  相似文献   

18.
At the heart of the RNA folding problem is the number, structures, and relationships among the intermediates that populate the folding pathways of most large RNA molecules. Unique insight into the structural dynamics of these intermediates can be gleaned from the time-dependent changes in local probes of macromolecular conformation (e.g. reports on individual nucleotide solvent accessibility offered by hydroxyl radical (()OH) footprinting). Local measures distributed around a macromolecule individually illuminate the ensemble of separate changes that constitute a folding reaction. Folding pathway reconstruction from a multitude of these individual measures is daunting due to the combinatorial explosion of possible kinetic models as the number of independent local measures increases. Fortunately, clustering of time progress curves sufficiently reduces the dimensionality of the data so as to make reconstruction computationally tractable. The most likely folding topology and intermediates can then be identified by exhaustively enumerating all possible kinetic models on a super-computer grid. The folding pathways and measures of the relative flux through them were determined for Mg(2+) and Na(+)-mediated folding of the Tetrahymena thermophila group I intron using this combined experimental and computational approach. The flux during Mg(2+)-mediated folding is divided among numerous parallel pathways. In contrast, the flux during the Na(+)-mediated reaction is predominantly restricted through three pathways, one of which is without detectable passage through intermediates. Under both conditions, the folding reaction is highly parallel with no single pathway accounting for more than 50% of the molecular flux. This suggests that RNA folding is non-sequential under a variety of different experimental conditions even at the earliest stages of folding. This study provides a template for the systematic analysis of the time-evolution of RNA structure from ensembles of local measures that will illuminate the chemical and physical characteristics of each step in the process. The applicability of this analysis approach to other macromolecules is discussed.  相似文献   

19.
Abstract. Here we describe the hatching and morphology of the earliest larval stages of the priapulid worm Priapulus caudatus for the first time. The hatching larva differs considerably from previously described larvae not only in its general body shape but also in its lack of a proper lorica including the typical lorica tubuli. Furthermore, no mouth opening or pharyngeal teeth have formed as yet, and the number and arrangement of scalids differ from that of later larvae. The hatching larva molts and emerges as the first lorica larva. This larva partially resembles earlier described lorica larvae, but there are a number of important differences; the first lorica larva is smaller, and the mouth opening as well as pharyngeal teeth are still yet to form. The second lorica larva is equipped with four rings of pharyngeal teeth; it shows striking similarity to the previously described larva of P. caudatus , i.e., the larva-type 2 , only differing in the scalid pattern. We conclude that the first two larval stages of P. caudatus have not been described previously. We suggest that discrepancies between the earliest lorica larvae described here and in earlier publications might depend on sub-speciation or ecophenotypic modification of larvae collected from different localities. Our findings highlight the importance of studying the development of non-model organisms such as priapulids under controlled laboratory conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号