共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stochastic patterning in the mouse pre-implantation embryo 总被引:1,自引:0,他引:1
3.
Sunadome K Yamamoto T Ebisuya M Kondoh K Sehara-Fujisawa A Nishida E 《Developmental cell》2011,20(2):192-205
4.
Katsuyoshi Takaoka Hiroshi Hamada 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1657)
The first cell fate decision during mouse development concerns whether a blastomere will contribute to the inner cell mass (ICM; which gives rise to the embryo proper) or to trophectoderm (TE; which gives rise to the placenta). The position of a cell within an 8- to 16-cell-stage embryo correlates with its future fate, with outer cells contributing to TE and inner cells to the ICM. It remains unknown, however, whether an earlier pre-pattern exists. Here, we propose a hypothesis that could account for generation of such a pre-pattern and which is based on epigenetic asymmetry (such as in histone or DNA methylation) between maternal and paternal genomes in the zygote. 相似文献
5.
R G Wales 《Australian journal of biological sciences》1969,22(3):701-707
6.
K H Moley W K Vaughn A H DeCherney M P Diamond 《Journal of reproduction and fertility》1991,93(2):325-332
Fifteen spontaneously diabetic, non-obese mice (NOD strain), 17 non-diabetic NOD mice (in which diabetes had not yet developed) and 9 diabetic NOD mice were treated with insulin. All animals were superovulated with 5 iu of pregnant mares' serum gonadotrophin followed 48 h later by 5 iu human chorionic gonadotrophin (hCG) and mated overnight with NOD males of proven fertility. To assess in-vitro and early in-vivo development, 23 NOD mice were killed 72 h after hCG treatment. Embryos were recovered from oviduct flushings and cultured in Ham's F-10 medium with 0.1% bovine serum albumin at 37 degrees C in an atmosphere of 5% O2, 5% CO2, and 90% N2. Development was assessed at intervals of 24 h for 72 h. Compared with embryos from non-diabetic NOD mice (n = 81), embryos from diabetic NOD mice (n = 68) demonstrated marked impairment in growth assessed by distribution of developmental stages at each observation period (24, 48, 72 h, all P less than 0.001) and by overall rates of progression of developmental stages (P less than 0.01). In diabetic NOD mice treated with insulin, embryo development (n = 7) was not significantly different from that of embryos from non-diabetic NOD mice (n = 81), but was significantly faster than in embryos from diabetic NOD mice not treated with insulin (n = 68) (P less than 0.001, for all periods, overall rate P less than 0.01). To assess late in-vivo growth, 18 NOD mice were killed 120 h after hCG.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
8.
9.
10.
Extracellular serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid, local reactions to physiological or pathological cues. The serine protease cascade that triggers the Toll signaling pathway in Drosophila embryogenesis shares several organizational characteristics with those involved in mammalian complement and blood clotting. One of the hallmarks of such cascades is their regulation by serine protease inhibitors (serpins). Serpins act as suicide substrates and are cleaved by their target protease, forming an essentially irreversible 1:1 complex. The biological importance of serpins is highlighted by serpin dysfunction diseases, such as thrombosis caused by a deficiency in antithrombin. Here, we describe how a serpin controls the serine protease cascade, leading to Toll pathway activation. Female flies deficient in Serpin-27A produce embryos that lack dorsal-ventral polarity and show uniform high levels of Toll signaling. Since this serpin has been recently shown to restrain an immune reaction in the blood of Drosophila, it demonstrates that proteolysis can be regulated by the same serpin in different biological contexts. 相似文献
11.
Kanka J 《Theriogenology》2003,59(1):3-19
12.
Pyruvate has been considered the sole substrate that can support development of the mouse zygote to the two-cell stage, with lactate able to support development from the two-cell stage. This study has determined for the first time that mitochondrial reducing equivalent shuttles regulate metabolism in the early embryo. Activity of the malate-aspartate shuttle was found to be essential for the metabolism of lactate in the two-cell embryo. Furthermore, the inability of the mouse zygote to use lactate as an energy source was a result of a lack of malate-aspartate shuttle activity. The mRNA for the four enzymes for shuttle activity were detected at all stages of development. It was determined that aspartate was a rate-limiting factor in the activity of the malate-aspartate shuttle in mouse zygotes probably due to the high K(m) of the cytoplasmic aspartate aminotransferase. Addition of high concentrations of exogenous aspartate to the culture medium enabled mouse zygotes to utilize lactate in the absence of pyruvate and develop normally to the blastocyst stage as well as produce normal viable offspring. This study determined that the malate-aspartate shuttle is a key regulator of embryo metabolism and therefore viability and is the first report that mouse zygotes can develop normally to term in the absence of pyruvate. 相似文献
13.
This study was an investigation of the interaction of lactate on pyruvate and glucose metabolism in the early mouse embryo. Pyruvate uptake and metabolism by mouse embryos were significantly affected by increasing the lactate concentration in the culture medium. In contrast, glucose uptake was not affected by lactate in the culture medium. At the zygote stage, the percentage of pyruvate taken up and oxidized was significantly reduced in the presence of increasing lactate, while at the blastocyst stage, increasing the lactate concentration increased the percentage of pyruvate oxidized. Lactate oxidation was determined to be 3-fold higher (when lactate was present at 20 mM) at the blastocyst stage compared to the zygote. Analysis of the kinetics of lactate dehydrogenase (LDH) determined that while the V(max) of LDH was higher at the zygote stage, the K(m) of LDH was identical for both stages of development, confirming that the LDH isozyme was the same. Furthermore, the activity of LDH isolated from both stages was reduced by 40% in the presence of 20 mM lactate. The observed differences in lactate metabolism between the zygote and blastocyst must therefore be attributed to in situ regulation of LDH. Activity of isolated LDH was found to be affected by nicotinamide adenine dinucleotide(+) (NAD(+)) concentration. In the presence of increasing concentrations of lactate, zygotes exhibited an increase in autofluorescence consistent with a depletion of NAD(+) in the cytosol. No increase was observed for later-stage embryos. Therefore it is proposed that the differences in pyruvate and lactate metabolism at the different stages of development are due to differences in the in situ regulation of LDH by cytosolic redox potential. 相似文献
14.
c-myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo 总被引:1,自引:0,他引:1
He C Hu H Braren R Fong SY Trumpp A Carlson TR Wang RA 《Development (Cambridge, England)》2008,135(14):2467-2477
The c-myc proto-oncogene, which is crucial for the progression of many human cancers, has been implicated in key cellular processes in diverse cell types, including endothelial cells that line the blood vessels and are critical for angiogenesis. The de novo differentiation of endothelial cells is known as vasculogenesis, whereas the growth of new blood vessels from pre-existing vessels is known as angiogenesis. To ascertain the function of c-myc in vascular development, we deleted c-myc in selected cell lineages. Embryos lacking c-myc in endothelial and hematopoietic lineages phenocopied those lacking c-myc in the entire embryo proper. At embryonic day (E) 10.5, both mutant embryos were grossly normal, had initiated primitive hematopoiesis, and both survived until E11.5-12.5, longer than the complete null. However, they progressively developed defective hematopoiesis and angiogenesis. The majority of embryos lacking c-myc specifically in hematopoietic cells phenocopied those lacking c-myc in endothelial and hematopoietic lineages, with impaired definitive hematopoiesis as well as angiogenic remodeling. c-myc is required for embryonic hematopoietic stem cell differentiation, through a cell-autonomous mechanism. Surprisingly, c-myc is not required for vasculogenesis in the embryo. c-myc deletion in endothelial cells does not abrogate endothelial proliferation, survival, migration or capillary formation. Embryos lacking c-myc in a majority of endothelial cells can survive beyond E12.5. Our findings reveal that hematopoiesis is a major function of c-myc in embryos and support the notion that c-myc functions in selected cell lineages rather than in a ubiquitous manner in mammalian development. 相似文献
15.
16.
17.
18.
PI3K/AKT信号通路在哺乳动物早期胚胎发育中起重要作用.抑癌基因PTEN是该通路中的负调节因子,但PTEN在卵和早期胚胎中的表达、分布以及作用都还未见报道.本研究通过免疫荧光方法发现卵细胞及着床前胚胎都表达PTEN,且具活性的PTEN主要分布在生发泡期(germinal vesical,GV)卵细胞的皮层部位以及致密桑椹胚的卵裂球表面.在培养基中添加低浓度的PTEN特异性抑制剂bpV(pic),GV期卵母细胞的成熟不受影响,但着床前胚胎发育受到阻滞.该结果提示PTEN在小鼠着床前胚胎发育中可能起重要作用. 相似文献
19.
The PI3K/Akt signal transduction pathway plays an important role in pre-implantation embryonic development. The tumor suppressor gene PTEN negatively regulates the PI3K/Akt pathway. Although PI3K is constitutively activated during pre-implantation embryonic development, currently no evidence shows the presence and possible involvement of PTEN in early embryo development. We investigated the expression of PTEN protein in germinal vesicle (GV) stage oocytes as well as in pre-implantation embryos. The activated form of PTEN was distributed in the peripheral of GV oocytes and compact morula. Treatment of GV oocytes with PTEN inhibitor bpV(pic) did not affect the maturation of the oocyte, but significantly impaired embryonic development. Thus, our study suggests the necessary role of PTEN in pre-implantation embryonic development. 相似文献
20.
D H Nichols 《The American journal of anatomy》1986,176(1):19-31
The trigeminal placode is a thickened region of ectodermal epithelium located along the side of the embryonic head. Mesenchyme escapes from the placode to form neurons of the trigeminal (V) ganglion. To further our knowledge of the morphogenesis of this escape, plastic thick sections were cut from mouse embryos and stained for light microscopy by using a technique which revealed escaping mesenchyme. The escape of trigeminal mesenchyme began at approximately 12 somites of age and was substantially complete by 30 somites. These results provided spatial/temporal orientation for a subsequent electron microscopic study. The first ultrastructural manifestation of escape was the penetration of an otherwise continuous basal lamina by small cell processes. The presence of longitudinally oriented microtubules within these processes suggests that mesenchymal cells escape through the basal lamina by using microtubules to direct/move their contents (e.g., the cell nucleus) into an enlarging process. Nuclei were distorted as they passed into these processes. This distortion suggests that basal lamina, together with a possible contribution from basal microfilaments, forms a rigid obstruction which is disrupted in the region from which a process is formed. In some cases a collar of basal lamina was observed around the necks of processes, but their distal membranes were invariably lamina-free. This lamina-free membrane is possibly that which is newly formed to accommodate the growing process. In later stages of escape, instances were observed in which the lamina was completely absent beneath an escaping cell and partially degraded beneath adjacent cells as well. These instances suggest that enzymatic digestion may play a role in degrading the lamina during mesenchymal escape. Apical desmosomes were often retained beyond the initial stages of escape. Mechanisms involved in their disruption are thus not among those which initiate escape. 相似文献