首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperhomocysteinemia, a condition of elevated blood homocysteine level, is an independent risk factor for cardiovascular diseases. Hyperhomocysteinemia is also found in patients with liver diseases. However, the direct effect of homocysteine on liver injury is not well known. Folic acid supplementation is a promising approach for improving endothelial function in patients with hyperhomocysteinemia. The aim of this study was to investigate the direct effect of hyperhomocysteinemia on liver injury and whether folic acid could offer any protective effect to the liver. Hyperhomocysteinemia was induced in rats fed a high-methionine diet for 4 weeks. There was a significant increase in the serum aspartate aminotransferase and alanine aminotransferase activities reflecting liver injury in hyperhomocysteinemic rats. Hepatic NAD(P)H oxidase was activated during hyperhomocysteinemia leading to increased superoxide anion production and peroxynitrite formation in the liver. As a consequence, the level of lipid peroxides was significantly elevated in livers of hyperhomocysteinemic rats. Folic acid supplementation effectively inhibited NAD(P)H oxidase-mediated superoxide anion production leading to reduced lipid peroxidation in the liver. Folic acid supplementation also alleviated hyperhomocysteinemia-induced liver injury. These results suggest that hyperhomocysteinemia can cause liver injury and supplementation of folic acid offers a hepatoprotective effect.  相似文献   

2.
Elevation of blood homocysteine (Hcy) levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. We previously reported that oxidative stress contributed to Hcy-induced inflammatory response in vascular cells. In this study, we investigated whether NADPH oxidase was involved in Hcy-induced superoxide anion accumulation in the aorta, which leads to endothelial dysfunction during hyperhomocysteinemia. Hyperhomocysteinemia was induced in rats fed a high-methionine diet. NADPH oxidase activity and the levels of superoxide and peroxynitrite were markedly increased in aortas isolated from hyperhomocysteinemic rats. Expression of the NADPH oxidase subunit p22 phox increased significantly in these aortas. Administration of an NADPH oxidase inhibitor (apocynin) not only attenuated aortic superoxide and peroxynitrite to control levels but also restored endothelium-dependent relaxation in the aortas of hyperhomocysteinemic rats. Transfection of human endothelial cells or vascular smooth muscle cells with p22 phox siRNA to inhibit NADPH oxidase activation effectively abolished Hcy-induced superoxide anion production, thus indicating the direct involvement of NADPH oxidase in elevated superoxide generation in vascular cells. Taken together, these results suggest that Hcy-stimulated superoxide anion production in the vascular wall is mediated through the activation of NADPH oxidase, which leads to endothelial dysfunction during hyperhomocysteinemia.  相似文献   

3.
4.
5.
6.
We have previously demonstrated that acute hyperhomocysteinemia induces oxidative stress in rat brain. In the present study, we initially investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative damage, namely total radical-trapping antioxidant potential and activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), as well as on DNA damage in parietal cortex and blood of rats. We also evaluated the effect of folic acid on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of Hcy (0.3-0.6 micromol/g body weight), and/or folic acid (0.011 micromol/g body weight) from their 6th to their 28th day of life. Twelve hours after the last injection the rats were sacrificed, parietal cortex and total blood was collected. Results showed that chronic homocysteine administration increased DNA damage, evaluated by comet assay, and disrupted antioxidant defenses (enzymatic and non-enzymatic) in parietal cortex and blood/plasma. Folic acid concurrent administration prevented homocysteine effects, possibly by its antioxidant and DNA stability maintenance properties. If confirmed in human beings, our results could propose that the supplementation of folic acid can be used as an adjuvant therapy in disorders that accumulate homocysteine.  相似文献   

7.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

8.
Hyperhomocysteinemia is regarded as an independent risk factor for cardiovascular disorders. Although renal dysfunction or failure is one of the important factors causing hyperhomocysteinemia, the role of homocysteine (Hcy) in the development of glomerulosclerosis is largely unknown. One of the key events in the pathogenesis of glomerulosclerosis is the infiltration of circulating monocytes into affected glomeruli. The objective of the present study was to investigate the effect of Hcy on the expression of monocyte chemoattractant protein-1 (MCP-1) in kidney mesangial cells and the mechanisms involved. Levels of MCP-1 and mRNA were significantly elevated in Hcy-treated rat mesangial cells. This increase was associated with activation of NF-kappaB as a result of increased phosphorylation of the inhibitor protein IkappaBalpha. Monocyte chemotactic activity in these cells was also enhanced. In addition, there was a significant elevation of superoxide anion produced by Hcy-treated cells, which preceded the increased phosphorylation of IkappaBalpha. Addition of superoxide dismutase or NF-kappaB inhibitors to the culture medium abolished Hcy-induced NF-kappaB activation and MCP-1 expression. Taken together, these results indicate that Hcy induced MCP-1 expression in mesangial cells. Such a process was mediated by oxidative stress and NF-kappaB activation. This may further aggravate renal function in patients with hyperhomocysteinemia.  相似文献   

9.
Abstract Cardiovascular disease is a frequent complication inducing mortality in chronic kidney disease (CKD) patients, which can be determined by both traditional risk factors and non-traditional risk factors such as malnutrition and oxidative stress. This study aimed to investigate the role of oxidative stress in uremia-induced cardiopathy in an experimental CKD model. CKD was induced in Sprague-Dawley rats by a 4-week diet supplemented in adenine, calcium and phosphorous and depleted in proteins. CKD was associated with a 3-fold increase in superoxide anion production from the NADPH oxidase in the left ventricle, but the maximal activity of mitochondrial respiratory chain complexes was not different. Although manganese mitochondrial SOD activity decreased, total SOD activity was not affected and catalase or GPx activities were increased, strengthening the major role of NADPH oxidase in superoxide anion output. Superoxide anion output was associated with enhanced expression of osteopontin (×7.7) and accumulation of pro-collagen type I (×3.7). To conclude, the increased activity of NADPH oxidase during CKD is associated with protein modifications which could activate a pathway leading to cardiac remodelling.  相似文献   

10.
Mitochondrial and NADPH oxidase systems and oxidative stress were investigated in 12 week high-fat high-sucrose (HFHS) diet-fed rats. A protective effect of wine polyphenol (PP) extract was also examined. In liver, maximal activities of CII and CII+III mitochondrial complexes were decreased but NADPH oxidase expression (p22phox and p47phox) and NADPH oxidase-dependent superoxide anion production were not modified, whereas oxidative stress (lipid and protein oxidation products and antioxidant systems) was increased with HFHS diet. In muscle, anion superoxide production was slightly increased while mitochondrial complex activities and lipid and protein oxidation products were not modified with HFHS diet. In heart, NADPH oxidase expression and superoxide anion production were increased, and maximal activity of mitochondrial respiratory chain complexes or oxidative stress parameters were not modified. Wine polyphenol extract had an inhibiting effect on liver oxidative stress and on heart NADPH oxidase expression and superoxide anion production, and on induction of hepatic steatosis with HFHS diet. Induction of mitochondrial dysfunction could be a primary event in the development of oxidative stress in liver, while in skeletal muscle and in heart the NADPH oxidase system seems to be mainly involved in oxidative stress. Wine polyphenol extract was shown to partially prevent oxidative stress in liver and heart tissues and to nearly completely prevent steatosis development in liver.  相似文献   

11.
Cystathionine beta synthase deficiency induces hyperhomocysteinemia which is considered as a risk factor for vascular diseases. Studies underlined the importance of altered cellular redox reactions in hyperhomocysteinemia-induced vascular pathologies. Nevertheless, hyperhomocysteinemia also induces hepatic dysfunction which may accelerate the development of vascular pathologies by modifying cholesterol homeostasis. The aim of the present study was to analyze the modifications of redox state in the liver of heterozygous cystathionine beta synthase-deficient mice, a murine model of hyperhomocysteinemia. In this purpose, we quantified levels of reactive oxygen and nitrogen species and we assayed activities of main antioxidant enzymes. We found that cystathionine beta synthase deficiency induced NADPH oxidase activation. However, there was no accumulation of reactive oxygen (superoxide anion, hydrogen peroxide) and nitrogen (nitrite, peroxynitrite) species. On the contrary, hepatic hydrogen peroxide level was decreased independently of an activation of glutathione-dependent mechanisms. In fact, cystathionine beta synthase deficiency had no effect on glutathione peroxidase, glutathione reductase and glutathione S-transferase activities. However, we found a 50% increase in hepatic catalase activity without any variation of expression. These findings demonstrate that cystathionine beta synthase deficiency initiates redox disequilibrium in the liver. However, the activation of catalase attenuates oxidative impairments.  相似文献   

12.
13.
Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development.  相似文献   

14.
Considering the well-known antioxidant properties of statins, it seems important to assess their impact on major markers of oxidative stress (superoxide anion radical, nitric oxide, and index of lipid peroxidation) to compare the antioxidative potentials of atorvastatin and simvastatin during the different degrees of hyperhomocysteinemia (HHcy) in rats. This study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. For 4 weeks, the animals were fed with one of the following diets: standard rodent chow, diet enriched in methionine with no deficiency in B vitamins (folic acid, B6, and B12), or diet enriched in methionine and deficient in B vitamins (folic acid, B6, and B12). At the same time, animals were treated with atorvastatin at doses of 3 mg/kg/day i.p. or simvastatin at doses of 5 mg/kg/day i.p. Levels of superoxide anion radical and TBARS were significantly decreased by administration of simvastatin in normal and high-homocysteine (Hcy) groups (p < 0.05). At 4 weeks after feeding with purified diets, the concentrations of the GSH, CAT, and SOD antioxidants were significantly affected among all groups (p < 0.05). Our results indicated that statin therapy had variable effects on the redox status in hyperhomocysteinemic rats, and simvastatin demonstrated stronger antioxidant effects than did atorvastatin.  相似文献   

15.
16.
The chemotherapeutic drug cisplatin has some side effects including nephrotoxicity that has been associated with reactive oxygen species production, particularly superoxide anion. The major source of superoxide anion is nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase. However, the specific segment of the nephron in which superoxide anion is produced has not been identified. Rats were sacrificed 72 h after cisplatin injection (7.5 mg/kg), and kidneys were obtained to isolate glomeruli and proximal and distal tubules. Cisplatin induced superoxide anion production in glomeruli and proximal tubules but not in distal tubules. This enhanced superoxide anion production was prevented by diphenylene iodonium, an inhibitor of NADPH oxidase. Consistently, this effect was associated with the increased expression of gp91phox and p47phox, subunits of NADPH oxidase. The enhanced superoxide anion production in glomeruli and proximal tubules, associated with the increased expression of gp91phox and p47phox, is involved in the oxidative stress in cisplatin‐induced nephrotoxicity.  相似文献   

17.
目的:观察模拟失重对大鼠胸主动脉氧化应激水平的影响,探讨其可能机制。方法:采用3周尾部悬吊大鼠模型模拟失重状态,通过DHE荧光探针技术观察大鼠动脉血管超氧阴离子水平变化,通过比色法测定大鼠动脉血管丙二醛(MDA)含量,通过蛋白印记技术观察悬吊(SUS)大鼠和正常对照(CON)大鼠动脉血管NOX4、p22phox的表达变化。结果:尾部悬吊3周后,SUS组大鼠胸主动脉超氧阴离子水平较CON组明显增高,SUS组(0.849±0.023 nmol/mg protein)大鼠MDA含量较CON组(0.575±0.054nmol/mg protein)明显增加;SUS组大鼠胸主动脉的p22phox及NOX4蛋白表达均较CON组明显增强。结论:模拟失重3周可使大鼠胸主动脉氧化应激水平明显增高,p22phox及NOX4蛋白表达明显增多,结果提示,尾部悬吊模拟失重状态下氧化应激水平增高可能与NADPH氧化酶表达增高有关。  相似文献   

18.
Men have higher blood pressure than women, and androgens and oxidative stress have been implicated as playing roles in this sexual dimorphism. The spontaneously hypertensive rat (SHR) is an animal model of both androgen- and oxidative stress-mediated hypertension. Therefore, the present studies were performed to test the hypothesis that androgens cause hypertension in SHR in part by stimulating superoxide production via NADPH oxidase. Castration of male SHR reduced blood pressure by 15% and attenuated both basal and NADPH-stimulated superoxide production in kidney cortical homogenates. Expression of p47(phox) and gp91(phox) but not p22(phox) subunits of NADPH oxidase were significantly lower in kidney cortex from castrated males compared with intact males. Moreover, inhibition of NADPH oxidase with apocynin caused approximately 15 mmHg reduction in blood pressure and reduced basal and NADPH-stimulated superoxide production in intact male SHR, but had no effect on blood pressure or superoxide production in castrated males. These data support the hypothesis that androgens cause oxidative stress and thereby increase blood pressure in male SHR via an NADPH oxidase-dependent mechanism.  相似文献   

19.
This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O(2)·(-) in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.  相似文献   

20.
Alpha-lipoic acid (ALA) is widely used as an antioxidant for the treatment of diabetes and its complications; however, the pro-oxidant potential of ALA has recently been reported. This study was designed to investigate whether ALA supplementation could have pro-oxidant effects on cardiac tissues in normal and diabetic rats. Diabetes was induced by a single dose of streptozotocin (STZ; 55 mg/kg (intraperitoneal). Diabetic and normal rats were treated with ALA (100 mg kg?1 day?1) for 45 days. ALA supplementation resulted in oxidative protein damage as evident by significant reduction in the cardiac levels of protein thiol in ALA-treated normal rats (P?<?0.01) together with a significant elevation (P?<?0.001) in the plasma levels of advanced oxidation protein products in ALA-treated normal rats and in ALA?+?STZ-diabetic rats compared with the normal control rats. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase has emerged as the major source of superoxide anion and enhanced oxidative damage in heart failure. ALA supplementation increased the myocardial immunoreactivity of p47phox subunit of NADPH oxidase in both normal nondiabetic and diabetic rats reflecting its pro-oxidant effect. Data showed that ALA supplementation failed to prevent cardiac complications in diabetic rats and led to cardiac toxicity in normal rats as indicated by pathological changes (cellular infiltration, fibrosis, and degeneration) and by the elevation of serum cardiac biomarkers compared with normal controls. The pro-oxidant effects of ALA suggest that careful selection of appropriate doses of ALA in reactive oxygen species-related diseases are critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号