首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Arabidopsis thaliana was transformed with the codA gene for choline oxidase from Arthrobacter globiformis under control of the 35S RNA promoter of cauliflower mosaic virus. As a result, high levels of glycinebetaine accumulated in the seeds of transformed plants. Transformation with the codA gene significantly enhanced the tolerance to high temperatures during the imbibition and germination of seeds, as well as during growth of young seedlings. The extent of enhancement of the tolerance to high temperature was correlated with levels of choline oxidase expressed and of glycinebetine accumulated in the transformed plants. The induction of homologues of heat shock protein 70 at high temperature was less conspicuous in the transformed plants than in the wild-type plants, suggesting that the transformation alleviated the high-temperature stress.  相似文献   

2.
A betA gene encoding choline dehydrogenase from Escherichia coli was transformed into cotton (Gossypium hirsutum L.) via Agrobacterium-mediated transformation. Transgenic cotton plants exhibited improved tolerance to chilling due to accumulation of glycinebetaine (GB). The results of our experiment showed that GB contents of leaves of transgenic lines 1, 3, 4, and 5, both before and after chilling stress, were significantly higher than those of wild-type (WT) plants. At 15°C, transgenic lines 1, 3, 4, and 5 exhibited higher germination capacity as determined by the germination speed and final germination percentage and, displayed less inhibition in seedling shoot growth rate than WT plants. Under chilling stress, transgenic lines 4 and 5 maintained higher relative water content, upper carbon dioxide (CO2) fixation capacity and PSII electron transfer rate, better osmotic adjustment (OA), a lower percentage of ion leakage, and less lipid membrane peroxidation when compared with WT plants. Chilling resistance of the transgenic lines was demonstrated to be positively correlated with GB content under chilling stress. The high levels of GB in transgenic cotton plants might not only protect the integrity of cell membrane from chilling damage, but also be involved in OA which alleviated chilling induced water stress. Moreover, under chilling-stressed conditions, transgenic cotton plants enhanced stomatal conductance, PSII electron transport rate, and further leaf photosynthesis through accumulating high levels of GB.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Nuclear accumulation of heat shock protein (HSP) 72 occurs after cardiac ischemia. This nuclear accumulation of HSP72 with stress occurs in other tissues and species. We postulated that nuclear accumulation of HSP72 was important for the protective effect of HSP72 and that phosphorylation of a single tyrosine (Y(524)) regulated nuclear accumulation of HSP72. Western blots of immunoprecipitated HSP72 from Cos-1 cells demonstrated that tyrosine becomes phosphorylated after heat shock. Treatment with the tyrosine kinase inhibitor geldanamycin blocked nuclear accumulation of HSP72 with heat shock. Two epitope-tagged constructs were made: M17 converting Y(524) to aspartic acid (pseudophosphorylation) and M18 converting Y(524) to phenylalanine. When transfected into Cos-1 cells, M17 accumulates more rapidly and M18 less rapidly than wild-type (WT) HSP72 in the nucleus following heat shock. Cells expressing M18 had less viability after heat shock at 43.5 degrees C than other constructs. After heat shock at 45 degrees C, cells expressing M17 had superior survival compared with WT and M18. These data suggest that phosphorylation at Y(524) facilitates nuclear accumulation of HSP72 following heat stress, and substitution of aspartic acid at Y(524) enhances resistance to heat-shock injury.  相似文献   

10.
11.
Chronic hepatotoxicity of carbon tetrachloride in hsp-70 knock out mice.   总被引:2,自引:0,他引:2  
The chronic hepatotoxic effects of carbon tetrachloride (CCl(4)) in heat-shock protein (HSP) 70 knock out (HSP70-/-) mice were examined. After repeated intraperitoneal injections of CCl(4) for six weeks, the level of ALT and weight ratio of the liver to body were lower in HSP70-/- mice than in the control (WT) mice. The levels of HSP25 and HSP47 were lowered in HSP70-/- mice as compared with WT mice. The grades of hepatic necrosis and neutrophil infiltration were not significantly different between HSP70-/- and WT mice. The collagen content was not affected significantly by CCl(4) treatment.  相似文献   

12.
Heat shock protein 70 (HSP70) is one of the most abundant and best characterized heat shock protein family that consists of highly conserved stress proteins, expressed in response to stress, and plays crucial roles in environmental stress tolerance and adaptation. The present study was conducted to identify major types of genes under the HSP70 family and to quantify their expression pattern in heat- and cold-adapted Indian goats (Capra hircus) with respect to different seasons. Five HSP70 gene homologues to HSPA8, HSPA6, HSPA1A, HSPA1L, and HSPA2 were identified by gene-specific primers. The cDNA sequences showed high similarity to other mammals, and proteins have an estimated molecular weight of around 70 kDa. The expression of HSP70 genes was observed during summer and winter. During summer, the higher expression of HSPA8, HSPA6, and HSPA1A was observed, whereas the expression levels of HSPA1L and HSPA2 were found to be lower. It was also observed that the expression of HSPA1A and HSPA8 was higher during winter in both heat- and cold-adapted goats but downregulates in case of other HSPs. Therefore, both heat and cold stress induced the overexpression of HSP70 genes. An interesting finding that emerged from the study is the higher expression of HSP70 genes in cold-adapted goats during summer and in heat-adapted goats during winter. Altogether, the results indicate that the expression pattern of HSP70 genes is species- and breed-specific, most likely due to variations in thermal tolerance and adaptation to different climatic conditions.  相似文献   

13.
Heat-shock proteins induce heavy-metal tolerance in higher plants   总被引:14,自引:0,他引:14  
Cell cultures of Lycopersicon peruvianum L. stressed with CdSO4 (10–3M) show typical changes in the ultrastructure, starting with the plasmalemma and later on extending to the endoplasmic reticulum and the mitochondrial envelope. Part of the membrane material is extruded, with the formation of osmiophilic droplets which increase in size and number during the stress period. After 4 h, about 20 of the cells are dead. A short heat stress preceeding the heavy-metal stress induces a tolerance effect by preventing the membrane damage. The cells show a normal ultrastructure with one exception: cytoplasmic heat-shock granules are formed. This protective effect can be abolished by cycloheximide. Cadmium uptake is not markedly influenced by the heat stress. Cadmium is found together with sulfur in small deposits in the vacuoles of stressed cells. The precipitates contain an excess of sulfur, evidently due to the stress-induced formation of phytochelatins. The role in heavy-metal tolerance of heat-shock proteins in the plasmalemma (HSP70) and in cytoplasmic heat-stress granules (HSP17, HSP70) is discussed.Abbreviations EDX energy dispersive analysis of X-rays - ESI electron-spectroscopic imaging - HM heavy metal - HSG heat-stress granules - HSP heat-shock protein - MNDO modified neglect of diatomic overlap This work was supported by the Ministerium für Wissenschaft und Forschung des Landes Sachsen-Anhalt and the Deutsche Forschungsgemeinschaft.  相似文献   

14.
Cucumber seedling radicles decrease in chilling tolerance as they increase in length or decrease in vigor. The protein content of the apical 5 mm of the radicle decreased with decreases in chilling tolerance ( R 2 = 0.92). This general reduction in protein content was reflected in a decrease of six dehydrin-like proteins with apparent molecular weights of 13.0, 15.0, 16.8, 23.0, 26.8, and 33.5 kDa. The disappearance of naturally occurring dehydrin-like proteins in cucumber seedling radicles as they elongate or lose vigor was correlated with a loss of chilling tolerance. Exposure to an osmotic (0.6 M mannitol) or heat (2 min at 45°C) stress enhanced chilling tolerance. The osmotic-shock treatment induced both chilling tolerance and the appearance or strengthening of dehydrin-like proteins previously present in radicles. The heat-shock treatment also induced high levels of chilling tolerance and protein(s) that reacted with a 23 and 70 kDa antibody. However, these heat-shock protein (HSPs) did not cross react with the probe for dehydrin-like proteins. When organized into high, medium, and low chilling tolerance groups, radicle that were chilling tolerant contained either the 13.0 and 16.8 kDa dehydrin-like proteins, or the 15.0 and 23.0 kDa dehydrin-like proteins, or the 23 or 70 kDa HSP.  相似文献   

15.
Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants were transformed with a gene for choline oxidase (codA) from Arthrobacter globiformis. The gene product (CODA) was targeted to the chloroplasts (Chl-codA), cytosol (Cyt-codA) or both compartments simultaneously (ChlCyt-codA). These three transgenic plant types accumulated different amounts and proportions of glycinebetaine (GB) in their chloroplasts and cytosol. Targeting CODA to either the cytosol or both compartments simultaneously increased total GB content by five- to sixfold over that measured from the chloroplast targeted lines. Accumulation of GB in codA transgenic plants was tissue dependent, with the highest levels being recorded in reproductive organs. Despite accumulating, the lowest amounts of GB, Chl-codA plants exhibited equal or higher degrees of enhanced tolerance to various abiotic stresses. This suggests that chloroplastic GB is more effective than cytosolic GB in protecting plant cells against chilling, high salt and oxidative stresses. Chloroplastic GB levels were positively correlated with the degree of oxidative stress tolerance conferred, whereas cytosolic GB showed no such a correlation. Thus, an increase in total GB content does not necessarily lead to enhanced stress tolerance, but additional accumulation of chloroplastic GB is likely to further raise the level of stress tolerance beyond what we have observed.  相似文献   

16.
Inbreeding is typically detrimental to individual fitness, with negative effects being often exaggerated in stressful environments. However, the causal mechanisms underlying inbreeding depression in general and the often increased susceptibility to stress in particular are not well understood. We here test whether inbreeding interferes with the heat-shock response, comprising an important component of the stress response which may therefore underscore sensitivity to stress. To this end we subjected the tropical butterfly Bicyclus anynana to a full-factorial design with three temperatures and three levels of inbreeding, and measured the expression of heat-shock protein (HSP) 70 via qPCR. HSP70 expression increased after exposure to heat as compared with cold or control conditions. Most strikingly, inbreeding strongly interfered with the heat-shock response, with inbred individuals showing a very weak upregulation of HSP70 only. Our results thus indicate that, in our study organism, interference with the heat-shock response may be one mechanism underlying reduced fitness of inbred individuals, especially when exposed to stressful conditions. However, these indications need to be corroborated using a broader range of different temperatures, genes and taxa.  相似文献   

17.
Plants are sessile organisms, and their ability to adapt to stress is crucial for survival in natural environments. Many observations suggest a relationship between stress tolerance and heat shock proteins (HSPs) in plants, but the roles of individual HSPs are poorly characterized. We report that transgenic Arabidopsis plants expressing less than usual amounts of HSP101, a result of either antisense inhibition or cosuppression, grew at normal rates but had a severely diminished capacity to acquire heat tolerance after mild conditioning pretreatments. The naturally high tolerance of germinating seeds, which express HSP101 as a result of developmental regulation, was also profoundly decreased. Conversely, plants constitutively expressing HSP101 tolerated sudden shifts to extreme temperatures better than did vector controls. We conclude that HSP101 plays a pivotal role in heat tolerance in Arabidopsis. Given the high evolutionary conservation of this protein and the fact that altering HSP101 expression had no detrimental effects on normal growth or development, one should be able to manipulate the stress tolerance of other plants by altering the expression of this protein.  相似文献   

18.
Heat shock factors (HSFs) in plants regulate heat stress response by mediating expression of a set of heat shock protein (HSP) genes. In the present study, we isolated a novel heat shock gene, TaHSF3, encoding a protein of 315 amino acids in wheat. Phylogenetic analysis showed that TaHSF3 belonged to HSF class B2. Subcellular localization analysis indicated that TaHSF3 localized in nuclei. TaHSF3 was highly expressed in wheat spikes and showed intermediate expression levels in roots, stems, and leaves under normal conditions. It was highly upregulated in wheat seedlings by heat and cold and to a lesser extent by drought and NaCl and ABA treatments. Overexpression of TaHSF3 in Arabidopsis enhanced tolerance to extreme temperatures. Frequency of survival of three TaHSF3 transgenic Arabidopsis lines was 75–91 % after heat treatment and 85–95 % after freezing treatment compared to 25 and 10 %, respectively, in wild-type plants (WT). Leaf chlorophyll contents of the transformants were higher (0.52–0.67 mg/g) than WT (0.35 mg/g) after heat treatment, and the relative electrical conductivities of the transformants after freezing treatment were lower (from 17.56 to 18.6 %) than those of WT (37.5 %). The TaHSF3 gene from wheat therefore confers tolerance to extreme temperatures in transgenic Arabidopsis by activating HSPs, such as HSP70.  相似文献   

19.
20.
Eukaryotes express several cytoplasmic HSP70 genes, and their encoded proteins participate in diverse cellular processes. Three cDNAs encoding highly expressed cytoplasmic HSP70 homologues from Pisum sativum were cloned and characterized. They were designated PsHSP71.2, PsHSC71.0, and PsHSP70b. These HSP70 genes have different expression profiles in leaves: PsHSP71.2 is observed only in response to heat stress, PsHSC71.0 is present constitutively, and PsHSP70b is weakly constitutively expressed, but induced strongly in response to heat stress. In addition to being heat induced, the PsHSP71.2 mRNA is also expressed in zygotic, but not maternal organs of developing pea seeds, while PsHSC71.0 and PsHSP70b mRNAs are present in maternal and zygotic organs throughout seed development. Immunoblot analysis of parallel protein samples detects a 70 kDa polypeptide in all samples, and a 72 kDa polypeptide that corresponds to the PsHSP71.2 gene product is observed in cotyledons beginning at mid-maturation and in axes beginning between late maturation and desiccation. This polypeptide is not detected in the seed coat. The 72 kDa polypeptide remains abundant in both cotyledons and axes through germination, but declines substantially between 48 and 72 h after the onset of imbibition. Differential control of HSP70 expression during heat stress, seed maturation, and germination is consistent with the hypothesis that there are functional distinctions between cytoplasmic HSP70s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号