首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
The anaphase‐promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and key regulator of cell cycle progression. Since APC/C promotes the degradation of mitotic cyclins, it controls cell cycle‐dependent oscillations in cyclin‐dependent kinase (CDK) activity. Both CDKs and APC/C control a large number of substrates and are regulated by analogous mechanisms, including cofactor‐dependent activation. However, whereas substrate dephosphorylation is known to counteract CDK, it remains largely unknown whether deubiquitinating enzymes (DUBs) antagonize APC/C substrate ubiquitination during mitosis. Here, we demonstrate that Cezanne/OTUD7B is a cell cycle‐regulated DUB that opposes the ubiquitination of APC/C targets. Cezanne is remarkably specific for K11‐linked ubiquitin chains, which are formed by APC/C in mitosis. Accordingly, Cezanne binds established APC/C substrates and reverses their APC/C‐mediated ubiquitination. Cezanne depletion accelerates APC/C substrate degradation and causes errors in mitotic progression and formation of micronuclei. These data highlight the importance of tempered APC/C substrate destruction in maintaining chromosome stability. Furthermore, Cezanne is recurrently amplified and overexpressed in numerous malignancies, suggesting a potential role in genome maintenance and cancer cell proliferation.  相似文献   

3.
细胞周期蛋白依赖性蛋白激酶(cyclin dependent kinases,CDKs)是细胞周期进行的推动力,泛素-蛋白酶体途径(ubiquitin-proteasome pathway,UPP)通过对细胞周期蛋白(cyclin)和CDK抑制物(CDK inhibitors,CKIs)的蛋白质水解作用来实现对CDKs活性的调控。SCF(Skp1-Cul1-F-box protein)和APC/C(anaphase-promoting complex/cyclosome)这两个泛素连接酶复合物参与了很多细胞周期调节因子的泛素化作用。它们参与的蛋白质降解系统的功能失调可能导致细胞增殖紊乱、基因组不稳定和肿瘤的发生。现对这两个泛素连接酶复合物的结构以及它们在细胞周期调控和肿瘤发生机制中的作用进行综述。  相似文献   

4.
The anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase responsible for controlling cell cycle transitions, is a multisubunit complex assembled from 13 different proteins. Numerous APC/C subunits incorporate multiple copies of the tetratricopeptide repeat (TPR). Here, we report the crystal structure of Schizosaccharomyces pombe Cut9 (Cdc16/Apc6) in complex with Hcn1 (Cdc26), showing that Cdc16/Cut9 is a contiguous TPR superhelix of 14 TPR units. A C-terminal block of TPR motifs interacts with Hcn1, whereas an N-terminal TPR block mediates Cdc16/Cut9 self-association through a homotypic interface. This dimer interface is structurally related to the N-terminal dimerization domain of Cdc27, demonstrating that both Cdc16/Cut9 and Cdc27 form homo-dimers through a conserved mechanism. The acetylated N-terminal Met residue of Hcn1 is enclosed within a chamber created from the Cut9 TPR superhelix. Thus, in complex with Cdc16/Cut9, the N-acetyl-Met residue of Hcn1, a putative degron for the Doa10 E3 ubiquitin ligase, is inaccessible for Doa10 recognition, protecting Hcn1/Cdc26 from ubiquitin-dependent degradation. This finding may provide a structural explanation for a mechanism to control the stoichiometry of proteins participating in multisubunit complexes.  相似文献   

5.
6.
7.
The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase is tightly regulated to ensure programmed proteolysis in cells. The activity of the APC/C is positively controlled by cyclin-dependent kinase (CDK), but a second level of control must also exist because phosphorylation inactivates Cdc20, a mitotic APC/C co-activator. How Cdc20 is dephosphorylated specifically, when CDK is high, has remained unexplained. Here, we show that phosphatases are crucial to activate the APC/C. Cdc20 is phosphorylated at six conserved residues (S50/T64/T68/T79/S114/S165) by CDK in Xenopus egg extracts. When all the threonine residues are phosphorylated, Cdc20 binding to and activation of the APC/C are inhibited. Their dephosphorylation is regulated depending on the sites and protein phosphatase 2A, active in mitosis, is essential to dephosphorylate the threonine residues and activate the APC/C. Consistently, most of the Cdc20 bound to the APC/C in anaphase evades phosphorylation at T79. Furthermore, we show that the 'activation domain' of Cdc20 associates with the Apc6 and Apc8 core subunits. Our data suggest that dephosphorylation of Cdc20 is required for its loading and activation of the APC/C ubiquitin ligase.  相似文献   

8.
9.
后期促进复合物/细胞周期体(anaphase promoting complex/cyclosome,APC/C)是一个多功能的泛素连接酶,参与细胞周期、代谢、DNA损伤修复、细胞自噬、凋亡、衰老及肿瘤发生等多种生物学过程。泛素化作为一种重要的翻译后修饰,可通过泛素-蛋白酶体系统(ubiquitin-proteasome system, UPS)调控蛋白质的降解。APC/C的分子量巨大,由多个亚基组成,在细胞周期调控中具有重要地位,可以通过介导细胞周期相关蛋白质的泛素化降解从而精确调控细胞周期的转换,并受共激活分子CDC20或CDH1的调控。了解APC/C的结构和功能,对于研究细胞周期及蛋白质翻译后修饰等生物学事件至关重要。近年,对APC/C分子结构和组成的解析工作取得了极大的进展,其在肿瘤中的作用及潜在的治疗应用也受到了关注。本文将着重对APC/C的组成和结构、参与泛素化的具体过程、在细胞周期中的调控和被调控机制以及参与肿瘤生成的最新研究进展进行综述。  相似文献   

10.
11.
The formation of leaf polarity is critical for leaf morphogenesis. In this study, we characterized and cloned an Arabidopsis gene, AS1/2 ENHANCER7 (AE7), which is required for both leaf adaxial-abaxial polarity formation and normal cell proliferation. The ae7 mutant exhibited leaf adaxial-abaxial polarity defects and double mutants combining ae7 with the leaf polarity mutants as1 (asymmetric leaves1), as2, rdr6 (RNA-dependent RNA polymerase6) or ago7/zip (argonaute7/zippy) all resulted in plants with an apparently enhanced loss of adaxial leaf identity. In addition, ae7 also showed decreased cell proliferation in both leaves and roots, compensated by increased cell sizes in leaves. AE7 encodes a protein conserved in many eukaryotic organisms, ranging from unicellular yeasts to humans; however, the functions of AE7 family members from other species have not been reported. In situ hybridization revealed that AE7 is expressed in a spotted pattern in plant tissues, similar to cell-cycle marker genes such as HISTONE4. Moreover, the ae7 endoploidy and expression analysis of several cell-cycle marker genes in ae7 suggest that the AE7 gene is required for cell cycle progression. As the previously characterized 26S proteasome and ribosome mutants also affect both leaf adaxial-abaxial polarity and cell proliferation, similar to the defects in ae7, we propose that normal cell proliferation may be essential for leaf polarity establishment. Possible models for how cell proliferation influences leaf adaxial-abaxial polarity establishment are discussed.  相似文献   

12.
13.
The first differentiation event in mammalian development gives rise to the blastocyst, consisting of two cell lineages that have also segregated in how the cell cycle is structured. Pluripotent cells of the inner cell mass divide mitotically to retain a diploid DNA content, but the outer trophoblast cells can amplify their genomes more than 500-fold by undergoing multiple rounds of DNA replication, completely bypassing mitosis. Central to this striking divergence in cell cycle control is the E3 ubiquitin-ligase activity of the anaphase-promoting complex or cyclosome (APC/C). Extended suppression of APC/C activity during interphase of mouse pluripotent cells promotes rapid cell cycle progression by allowing stabilization of cyclins, whereas unopposed APC/C activity during S phase of mouse trophoblast cells triggers proteasomal-mediated degradation of geminin and giant cell formation. While differential APC/C activity might govern the atypical cell cycles observed in pre-implantation mouse embryos, geminin is a critical APC/C substrate that: (1) escapes degradation in pluripotent cells to maintain expression of Oct4, Sox2 and Nanog; and (2) mediates specification and endoreduplication when targeted for ectopic destruction in trophoblast. Thus, in contrast to trophoblast giant cells that lack geminin, geminin is preserved in both mouse pluripotent cells and non-endoreduplicating human cytotrophoblast cells.  相似文献   

14.
15.
Xyloglucan endotransglucosylases/hydrolases (XTHs) are a class of enzymes capable of catalyzing the molecular grafting between xyloglucans and/or the endotype hydrolysis of a xyloglucan molecule. They are encoded by 33 genes in Arabidopsis. Whereas recent studies have revealed temporally and spatially specific expression profiles for individual members of this family in plants, their biological roles are still to be clarified. To identify the role of each member of this gene family, we examined phenotypes of mutants in which each of the Arabidopsis XTH genes was disrupted. This was undertaken using a reverse genetic approach, and disclosed two loss-of-function mutants for the AtXTH27 gene, xth27-1 and xth27-2. These exhibited short-shaped tracheary elements in tertiary veins, and reduced the number of tertiary veins in the first leaf. In mature rosette leaves of the mutant, yellow lesion-mimic spots were also observed. Upon genetic complementation by introducing the wild-type XTH27 gene into xth27-1 mutant plants, the number of tertiary veins was restored, and the lesions disappeared completely. Extensive expression of the pXTH27::GUS fusion gene was observed in immature tracheary elements in the rosette leaves. The highest level of AtXTH27 mRNA expression in the rosette leaves was observed during leaf expansion, when the tracheary elements were elongating. These findings indicate that AtXTH27 plays an essential role during the generation of tracheary elements in the rosette leaves of Arabidopsis.  相似文献   

16.
17.
18.
19.
20.
  1. Download : Download high-res image (48KB)
  2. Download : Download full-size image
Highlights
  • •Chemical proteomics in G1 cells treated with small molecule APC/C inhibitors reveals novel putative APC/C substrates.
  • •The insulin receptor adaptor IRS2 is an APC/C substrate that is targeted for degradation by APC/CCdh1.
  • •Quantitative proteomics in IRS2 knockout cells reveals a deficiency in cell cycle related protein expression.
  • •IRS2 promotes a robust spindle assembly checkpoint (SAC) during M-phase.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号