首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glutamate (10-100 microM) reversibly depolarizes guinea-pig cerebral cortical synaptosomes. This does not appear to be because of a conventional autoreceptor. Neither kainate at 1 mM, 100 microM N-methyl-D-aspartate (NMDA), 100 microM L-2-amino-4-phosphonobutanoate (APB), nor 100 microM quisqualate affects the Ca2+-dependent release of glutamate from suboptimally depolarized synaptosomes. However, kainate, quisqualate, and the quisqualate agonists beta-N-oxalylamino-L-alanine and alpha-amino-3-hydroxy-5-methylisoxazole propionate cause a slow Ca2+-independent release of glutamate from polarized synaptosomes. However, unlike kainate, quisqualate does not inhibit the acidic amino acid carrier. APB, NMDA, and the NMDA receptor-mediated neurotoxin beta-N-methylamino-L-alanine do not influence Ca2+-independent release at 100 microM. The depolarization of the plasma membrane by glutamate can be mimicked by D-aspartate, can be blocked by the transport inhibitor dihydrokainate, and is accompanied by the net uptake of acidic amino acids. L-Glutamate or D-aspartate at 100 microM increases the cytoplasmic free Ca2+ concentration. D-aspartate at 100 microM causes a Ca2+-dependent release of endogenous glutamate, superimposed on the Ca2+-independent heteroexchange with glutamate through the acidic amino acid carrier. The results suggest that the glutamatergic subpopulation of synaptosomes can be depolarized by exogenous glutamate.  相似文献   

2.
Fluorometry was employed to measure the noradrenaline (NA) content in rat brain synaptosomes depending on the duration of incubation, depolarization effects (40 mM KCl or 1.5 mM ouabain), composition of the synaptosomal fraction and concentration of the peptides. The 10-minute incubation in a potassium medium of a suspension of light synaptosomes was used as an optimal test-system for studying the peptide action. Leu-enkephalin inhibited the depolarization-induced NA release. The effect was abolished by naloxone. The delta-sleep-inducing peptide (DSIP) did not influence the neurotransmitter release at concentrations of 10(-8)-10(-5) M. A mixture of amino acids imitating the amino acid composition of the DSIP influenced spontaneous release of NA. This effect is discussed in connection with the physiological action of the peptide on its intraventricular injection.  相似文献   

3.
The aim of the present study was to determine whether exogenous radioactive GABA and glutamate previously taken up by rat brain synaptosomes are released preferentially with respect to the endogenous unlabeled amino acids. Preferential release was monitored by comparing the specific radioactivity of the amino acids released to that present in synaptosomes at the beginning and at the end of the release period. The GABA released spontaneously or by depolarizing the synaptosomes with high K+ in the presence of Ca2+ had the same specific radio-activity as that present in synaptosomes before or after superfusion. Depolarization with veratridine or superfusion with OH-GABA caused a moderate increase (15–20%) in the specific radioactivity of the GABA released and a corresponding slight decrease in that of superfused synaptosomes. In conditions causing a supraadditive release of exogenous and endogenous GABA (see ref. 13), the specific radioactivity of the GABA released was increased 20–30%. The GABA with higher-than-average specific radioactivity is probably representative of the cytoplasmic pool of this amino acid. The glutamate released spontaneously had a specific radioactivity lower than that present in synaptosomes at the start of superfusion, and also the specific radioactivity in superfused synaptosomes was lower than at the start of superfusion. The glutamate released by aspartate (by heteroexchange), by veratridine, or by high K+ had a specific radioactivity higher than that of the amino acid released spontaneously, similar to that present in synaptosomes at the start of superfusion, and higher than that found in superfused synaptosomes. These findings suggest that exogenous radioactive glutamate is released preferentially with respect to the endogenous amino acid and to the glutamate synthesized from glucose during the superfusion period.  相似文献   

4.
The effects of iron-dependent peroxidation on respiration and neurotransmitter transport of brain nerve endings has been studied. Rat brain synaptosomes were peroxidized by exposure to an ADP-Fe/ascorbate system and the protective effect of added Se, Cd, or Zn was investigated with regard to dopamine and gamma-aminobutyric acid (GABA) transport. Peroxidation impaired the respiration of synaptosomes by about 20% and caused a marked increase in dopamine uptake; but in contrast, peroxidation induced a large decrease in synaptosomal uptake of GABA. The increased dopamine transport into synaptosomes was partially prevented by the presence of Zn, Se, or Cd. The presence of Zn, Cd, or Se, in order of decreasing effectiveness, also slowed down ADP-Fe/ascorbate mediated peroxidation of synaptosomes. Peroxidation caused a significant inhibition of veratridine-dependent release of both dopamine and GABA from synaptosomes, but the KCl-dependent release of these neurotransmitters was not effected by peroxidation. These results implicate that peroxidation damage of nerve endings may lead to large changes in neurotransmitter transport thus resulting in an alteration in the function of the central nervous system.  相似文献   

5.
Abstract— Particulate fractions from rat brain homogenate containing the synaptosomes synthesize and release prostaglandins F and E on aerobic incubation. The prostaglandin of the F-typc released could be further identified as proslaglandin F using specific radioimmunoassays for prostaglandins F, and F2α-. The metabolite 13,14-dihydro-15-keto-prostaglandin F could not be detected. The amount of prostaglandins released is dependent on incubation time and temperature as well as pH and osmolarity of the incubation medium. Total brain homogenate released more prostaglandins than purified synaptosomes per mg protein, indicating that synaptosomes are probably not a main source of prostaglandins when compared with other subcellular brain fractions. While prostaglandin synthesis was only moderately increased by the addition of the precursor fatty acid arachidonic acid, anti-inflammatory drugs like indomethacin, high concentrations of some local anaesthetics and Δ1-tetrahydrocannabinol inhibited prostaglandin release. The neurotransmitters noradrenaline, dopamine and 5-hydroxytryptamine did not influence prostaglandin release from the synaptosomal rat brain fractions.  相似文献   

6.
Effects of Kainic Acid in Rat Brain Synaptosomes: The Involvement of Calcium   总被引:14,自引:11,他引:3  
Abstract: The effects of kainic acid were investigated in preparations of rat brain synaptosomes. It was found that kainic acid inhibited competitively the uptake of d -[3H]aspartate, with a K i of approximately 0.3 m m . Kainic acid also caused release of two excitatory amino acid neurotranstnitters, aspartate and glutamate, in a time- and concentration-dependent manner, but had no effect on the content of γ-aminobutyric acid. Concomitant with the release of aspartate and glutamate, depolarization of the synaptosomal membrane and an increase in intracellular calcium were observed, with no measurable change in the concentration of internal sodium ions. The increase in intrasynaptosomal calcium and decrease in transmem-brane electrical potential were prevented by the addition of glutamate, whereas the kainate-induced release of ra-dioactive aspartate was substantially inhibited by lowering the concentration of calcium in the external medium. It is postulated that kainic acid reacts with a class of glutamate receptors located in a subpopulation of synaptosomes, presumably derived from the glutamatergic and aspartatergic neuronal pathways, which possesses high-affinity uptake system(s) for glutamate and/or aspartate. Activation of these receptors causes opening of calcium channels, influx of calcium into the synaptosomes, and depolarization of the synaptosomal plasma membrane with consequent release of amino acid neurotransmitters.  相似文献   

7.
Cerebral cortex tissue was obtained at autopsy from neonatal Poll Hereford calves with clinically confirmed maple syrup urine disease (MSUD), neonatal Holstein-Friesian calves with clinically confirmed citrullinemia, and matched controls. From this, synaptosomes were prepared for studies of neurotransmitter amino acid uptake and stimulus-induced release, and synaptic plasma membranes were obtained for studies of associated postsynaptic receptor binding sites. As well as having abnormal brain tissue concentrations of the pathognomic plasma amino acids (markedly increased levels of the branched-chain compounds valine, isoleucine, and leucine in MSUD; marked elevation of citrulline levels in citrullinemia), both groups of diseased animals showed reduced brain tissue concentrations of each of the transmitter amino acids glutamate, aspartate, and gamma-aminobutyric acid (GABA). Nontransmitter amino acids were generally unaffected in either disease. Citrullinemic calves showed a marked increase in brain glutamine concentration; in calves with MSUD, the glutamine concentration was raised, but to a much lesser extent. The Na(+)-dependent synaptosomal uptake of both glutamate and GABA was markedly reduced (to less than 50% of control values in both cases) in citrullinemic calves but was unaltered in calves with MSUD. Whereas synaptosomes from normal calves showed the expected stimulus-coupled release of transmitter amino acids, especially glutamate and aspartate, and no response to stimulus of nontransmitter amino acids, there was no increased release of transmitter amino acids in response to depolarization in synaptosomes from citrullinemic calves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract— Several parameters of GABA Auxes across the synaptosomal membrane were studied using synaptosomes prepared from the brain of immature (8-day-old) rats. The following aspects of GABA carrier-mediated transport were similar in immature and mature synaptosomes: (1) magnitude of [3H]GABA accumulation; (2) GABA homoexchange in normal ionic conditions; (3) GABA homoexchange in the presence of cationic fluxes (Na+ and Ca2+ influx, K+ efflux) characteristic of physiological depolarization. As in adult synaptosomes (Levi & Raiteri , 1978), in these conditions the stoichiometry of GABA homoexchange was in the direction of net outward transport (efflux > influx). The essential differences between the behaviour of 8-day-old and adult synaptosomes were the following: (1) β-alanine (a glial uptake inhibitor) inhibited GABA uptake in immature synaptosomes (the inhibition being greater in crude than in purified preparations) and was without a significant effect in adult synaptosomes. DABA and ACHC (two neuronal uptake inhibitors) depressed GABA uptake more efficiently in purified than in crude immature synaptosomes, but were as effective in crude and purified nerve endings from adult animals. The data suggest a greater uptake of GABA in the‘gliosomes’contaminating the synaptosomal preparations from immature animals. (2) In immature synaptosomes prelabelled with [3H]GABA the specific radioactivity of the GABA released spontaneously or by heteroexchange (with 300 μm -OH-GABA) was the same as that present in synaptosomes, while in adult synaptosomes OH-GABA released GABA with increased specific radioactivity. The data suggest a homogeneous distribution of the [3H]GABA taken up within the endogenous GABA pool in immature, but not in mature synaptosomes. (3) In immature synaptosomes the release of GABA (radioactive and endogenous) induced by depolarization with high KC was not potentiated by Ca2+, unless the synaptosomes had been previously depleted of Na+ These data suggest that, although a Ca2+ sensitive pool of GABA may be present, this pool is not susceptible to being released in normal conditions, probably because the high intrasynaptosomal Na+ level prevents a sufficient depolarization. The possible significance of these findings in terms of functional activity of GABAergic neurotransmission in the immature brain is discussed.  相似文献   

9.
Synaptosomes isolated from rat brain accumulated cysteic acid by a high-affinity transport system (Km = 12.3 +/- 2.1 microM; Vmax = 2.5 nmol mg protein-1 min-1). This uptake was competitively inhibited by aspartate (Ki = 13.3 +/- 1.8 microM) and cysteine sulfinate (Ki = 13.3 +/- 2.3 microM). Addition of extrasynaptosomal cysteate, aspartate, or cysteine sulfinate to synaptosomes loaded with [35S]cysteate induced rapid efflux of the cysteate. This efflux occurred via stoichiometric exchange of amino acids with half-maximal rates at 5.0 +/- 1.1 microM aspartate or 8.0 +/- 1.3 microM cysteine sulfinate. Conversely, added extrasynaptosomal cysteate exchanged for endogenous aspartate and glutamate with half-maximal rates at 5.0 +/- 0.4 microM cysteate. In the steady state after maximal accumulation of cysteate, the intrasynaptosomal cysteate concentrations exceeded the extrasynaptosomal concentrations by up to 10,000-fold. The measured concentration ratios were the same, within experimental error, as those for aspartate and glutamate. Depolarization, with either high [K+] or veratridine, of the plasma membranes of synaptosomes loaded with cysteate caused parallel release of cysteate, aspartate, and glutamate. It is concluded that neurons transport cysteate, cysteine sulfinate, aspartate, and glutamate with the same transport system. This transport system catalyzes homoexchange and heteroexchange as well as net uptake and release of all these amino acids.  相似文献   

10.
A study was made of the functional potentialities of synaptosomes isolated from the brain cortex and lumbar enlargement of the spinal cord. The yield of synaptosomes from the brain cortex amounted to 10 mg (with reference to protein) from 1 g of wet tissue, and that of synaptosomes from the spinal cord was equal to 1/3 of the yield from the brain, with the preparation being strongly contaminated with myelin scraps. Brain synaptosomes were marked by high level of respiration whose magnitude was affected by the agents (ouabain, high concentrations of K+ and benzylpenicillin) that change ion membrane transport. Synaptosomes maintained higher GABA gradient across the plasmatic membrane. Ouabain and potassium depolarization produced a considerable release of GABA and 3H-GABA into the incubation medium. A conclusion is made that the method of Hajos should be rather used for rapid isolation of the synaptosomal fraction from the rat brain cortex.  相似文献   

11.
Ca2+ blood serum level was reduced by 34.5% in rats with hypoparathyroidism (HPT) on the 7th-12th day after the damage of parathyroid glands. Synaptosomes isolated from the brain cortex of rats during this period accumulated in a normal medium more 45Ca2+ than synaptosomes from healthy animals. In potassium depolarization, control and experimental synaptosomes accumulated more 45Ca2+, however in HPT the increment in 45Ca2+ uptake in high potassium medium was less temperature-dependent. In normal medium 3H-GABA uptake and release by synaptosomes from the brain of rats with HPT slightly differed from those in the control. On the contrary, 3H-GABA release induced by synaptosome depolarization was depressed in HPT. It is suggested that nerve terminal excretory function disturbances contribute to increased excitability of the central nervous system in hypoparathyroidism.  相似文献   

12.
The release of GABA induced by veratridine shows no correlation with the synaptosomal Ca content and is therefore not mediated by the release of mitochondrial Ca. Instead, with both Ca-repleted and -depleted synaptosomes, the extent of GABA efflux is correlated with the decrease in plasma membrane potential. The slow release of GABA induced by protonophores and the Ca-dependent release induced by ionophore A23187 are also consequences of the depolarization of the plasma membrane, rather than of elevated cytosolic Ca. Finally, the ability of verapamil to inhibit the release of GABA induced by low veratridine concentrations is due to the ability of the Ca channel inhibitor to antagonize the action of veratridine, rather than to inhibit Ca entry into the synaptosome. It is concluded that it is essential to monitor plasma membrane potentials in experiments in which amino acid efflux from synaptosomes is induced.  相似文献   

13.
The effect of acidification of the incubation medium on the membrane potential and glutamate uptake and release was studied in isolated presynaptic neuronal endings (synaptosomes) from rat brain. Using the fluorescent probe diS-C3-(5), a rapid depolarization of plasma membrane was detected at pH 6.0, most probably as a result of the inhibition of the sodium pump and potassium channel blockade. The membrane potential decrease did not result in increase of basal efflux of glutamate. Glutamate release following K+-induced depolarization was decreased upon lowering pH to 6.0. Acidosis inhibited mainly calcium-dependent (vesicular) release of glutamate and did not significantly reduce [14C]glutamate uptake. This inhibition of glutamate release but not of glutamate uptake may be a mechanism of the protective effect of acidosis during brain ischemia.  相似文献   

14.
The inhibitors okadaic acid (OA), fostriecin (FOS) and cyclosporin A (CsA), were used to investigate the roles of protein phosphatases in regulating exocytosis in rat brain synaptosomes by measuring glutamate release and the release of the styryl dye FM 2-10. Depolarization was induced by 30 mM KCl, or 0.3 mM or 1 mM 4-aminopyridine (4AP). OA and FOS produced a similar partial inhibition of KCl- and 0.3 mM 4AP- evoked exocytosis in both assays, but had little effect upon exocytosis evoked by 1 mM 4AP. In contrast, CsA had no effect upon KCl- and 0.3 mM 4AP-evoked exocytosis, but significantly enhanced glutamate release but not FM 2-10 dye release evoked by 1 mM 4AP. None of the phosphatase inhibitors changed calcium signals from FURA-2-loaded synaptosomes either before or after depolarization. Pretreatment with 100 nM phorbol 12-myristate 13-acetate abolished the inhibitory effect of OA on exocytosis induced by 0.3 mM 4AP. Taken together, these results show that exocytosis from synaptosomes has a phosphatase-sensitive and phosphatase-insensitive component, and that there are two modes of phosphatase-sensitive exocytosis that can be elicited by different depolarization conditions. Moreover, these two modes are differentially sensitive to phosphatase 2A and 2B.  相似文献   

15.
The effect of various drugs on the release of [3H]-serotonin from synaptosomes of reserpine-treated rats was compared with that obtained with synaptosomes of untreated animals.The increase in [3H]-serotonin release induced by d-fenfluramine was virtually abolished by reserpine; the effect of d-norfenfluramine, the main metabolite of fenfluramine, was instead enhanced in synaptosomes of reserpine treated animals. [3H]-serotonin release induced by l-isomers of fenfluramine or norfenfluramine was increased or not affected, respectively, after reserpine treatment.The effects of other drugs, known to activate serotonin mechanisms such as metachlorophenylpiperazine and quipazine, like d-norfenfluramine, were increased by the reserpine treatment.The present data show that [3H]-serotonin can be released by drugs from two pools with different sensitivity to reserpine. The reserpinized synaptosomes could provide useful information on the mechanisms of action of drugs acting on brain serotonin.  相似文献   

16.
The carrier-mediated transport of GABA in rat brain synaptosomes was strongly and permanently inhibited byl-2,4-diaminobutyric acid (DAB). In order to discriminate between carrier-mediated and non-carrier-mediated release of [3H]GABA, synaptosomes prelabeled with 0.5 M [3H]GABA in the presence of 100 M DAB, or with 0.2 M [3H]GABA without DAB, were superfused in conditions stimulating the release of [3H]GABA. Only the release elicited by unlabeled GABA or DAB (by homo- and heteroexchange, respectively) was strongly inhibited in DAB-pretreated synaptosomes. The spontaneous release and the release induced by 56 mM KCl in the presence of CaCl2, by the ionophore A23187, by ouabain, by lack of K+, or by purified black widow spider toxin were unaffected or only barely decreased in DAB-treated synaptosomes, and therefore do not seem to be mediated by the DAB-blocked GABA carrier.  相似文献   

17.
In this study, we first characterized synaptosome microRNA (miRNA) profiles using microarray and qRT‐PCR. MicroRNAs were detected in isolated synaptic vesicles, and Ago2 immunoprecipitation studies revealed an association between miRNAs and Ago2. Second, we found that miR‐29a, miR‐99a, and miR‐125a were significantly elevated in synaptosome supernatants after depolarization. MiRNA secretion by the synaptosome was Ca2+‐dependent and was inhibited by the exocytosis inhibitor, okadaic acid. Furthermore, application of nerve growth factor increased miRNA secretion without altering the spontaneous release of miRNAs. Conversely, kainic acid decreased miRNA secretion and enhanced the spontaneous release of miRNAs. These results indicate that synaptosomes could secrete miRNAs. Finally, synthesized miRNAs were taken up by synaptosomes, and the endocytosis inhibitor Dynasore blocked this process. After incubation with miR‐125a, additional miR‐125a was bound to Ago2 in the synaptosome, and expression of the miR‐125a target gene (PSD95 mRNA) was decreased; these findings suggest that the ingested miRNAs were assembled in the RNA‐induced silencing complex, resulting in the degradation of target mRNAs. To our knowledge, this is the first study that demonstrates the secretion of miRNAs by synaptosomes under physiological stimulation and demonstrates that secreted miRNAs might be functionally active after being taken up by the synaptic fraction via the endocytic pathway.  相似文献   

18.
Hippocampal mossy fiber synaptosomes were used to investigate the role of arachidonic acid in the release of endogenous glutamate and the long-lasting facilitation of glutamate release associated with long-term potentiation. Exogenous arachidonate induced a dose-dependent efflux of glutamate from the hippocampal mossy fiber synaptosomes and this effect was mimicked by melittin. Neither treatment induced the release of occluded lactate dehydrogenase at the concentrations used in these experiments. In each case, removal of the biochemical stimulus allowed for glutamate efflux to return to spontaneous levels. However, there was a persistent effect of exposure to either arachidonate or melittin, since these compounds facilitated the glutamate release induced by the subsequent addition of 35 mM KCl. This facilitation of glutamate release resulted from an enhancement of both the magnitude and duration of the response to depolarization. Although exogenous prostanoids were also able to stimulate the release of glutamate, they appeared to play no direct role in secretion processes, since inhibition of eicosanoid synthesis potentiated the glutamate efflux in response to membrane depolarization or exogenous arachidonic acid. We suggest that the calcium-dependent accumulation of arachidonic acid in presynaptic membranes plays a central role in the release of endogenous glutamate and that the persistent effects of arachidonic acid may be related to the maintenance of long-term potentiation in the hippocampal mossy fiber-CA3 synapse.  相似文献   

19.
The effects of fatty acids, oleate and palmitate, on gamma-aminobutyric acid (GABA), aspartate, and 3,4- dihydroxyphenylethylamine (dopamine) transport and a variety of other membrane functions were studied in rat brain synaptosomes at a constant lipid-to-protein ratio. Under the conditions utilized oleate, but not palmitate, caused statistically significant changes in synaptosomal functions. Oleic acid inhibited the uptake of the amino acid neurotransmitters and dopamine in a tetrodotoxin-insensitive manner; it also induced the release of neurotransmitters from synaptosomes. The synaptosomal membrane potential decreased and the maximum GABA accumulation ratio [( GABA]i/[GABA]o) declined in parallel. The same depolarizing effect was seen in the presence of 50 microM verapamil or when chloride was replaced by propionate. The rate of respiration was stimulated by the unsaturated fatty acid; neither verapamil (50 microM) nor ouabain (100 microM) was effective in preventing the increase in oxygen consumption. By contrast, ruthenium red substantially decreased the stimulatory effect of oleate. The intrasynaptosomal [Ca2+] was increased by 40%, whereas [Na+]i remained unaltered. It is postulated that under the conditions used the inhibition of neurotransmitter uptake and the decrease in their accumulation caused by oleate result from the depolarization of synaptosomes that arises, at least in part, from increased permeability of the plasma membrane to calcium ions.  相似文献   

20.
A two-fold increase in acetylcholine, that can randomly be released by brain synaptosomes, is registered 60 min following whole-body X-irradiation of rats with a dose of 0.21 C/kg; depolarization of the synaptosome membranes by potassium chloride increases the release of acetylcholine the augmentation of the release in this case being lower than that in the control. The initial rate of spontaneous neuromediator release from synaptosomes grows by 80 per cent whereas after depolarization of synaptosome membranes by potassium chloride, by 15 per cent. There is a 2.5-fold increase in the maximum rate of a highly specific uptake of choline with Km value being constant. Acetylcholine content of gray substance of irradiated rat brain is invariable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号