首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific binding sites for vasoactive intestinal peptide (VIP), a potent vasodilatory polypeptide, and its effect on formation of intracellular cyclic AMP levels were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Specific binding of 125I-labeled-VIP to cultured VSMCs was time- and temperature-dependent. Scatchard analysis of binding studies suggested the presence of two classes of high and low affinity binding sites for VIP; the apparent Kd and the number of maximal binding capacity were ∼8×10−9 M and 60,000 sites/cell (high-affinity sites) and ∼4×10−8 M and 140,000 sites/cells (low-affinity sites), respectively. Unlabeled VIP competitively inhibited the binding of 125I-labeled-VIP to its binding sites, whereas neither peptides structurally related to VIP, nor other vasoactive substances affected the binding. VIP stimulated formation of intracellular cyclic AMP in cultured VSMCs in a dose-dependent manner; the stimulatory effect of VIP on cyclic AMP formation was not blocked by propranolol and was additive with isoproterenol. The present study first demonstrates the presence of specific receptors for VIP in VSMCs functionally coupled to adenylate cyclase system. It is suggested that VIP exerts its vasodilatory effect through its specific receptors distinct from β-adrenergic receptors.  相似文献   

2.
1. Vasoactive intestinal peptide (VIP) receptors were identified in crude rat hepatic membranes by 125I-labelled VIP binding and by the ability of VIP to stimulate adenylate cyclase activity. The specificity of these receptors was evaluated by the capacity of secretin, synthetic secretin analogues, and secretin fragments to inhibit 125I-labelled VIP binding and to stimulate adenylate cyclase. 2. The results were compatible with the existence of two classes of VIP binding sites that could be distinguised according to their affinity for VIP and their specificity. High-affinity sites were more specific for VIP as secretin was 175 times less potent than VIP for recognition of these sites while being only 33 times less potent than VIP for recognition of low-affinity sites. 3. Secretin analogues, monosubstituted in position 2, 3, 4, or 6 were less potent than secretin for adenylate cyclase stimulation as well as for the recognition of the two classes of receptors. [Val5]Secretin was more potent than secretin and appeared definitely more VIP-like than secretin; [Ala4, Val5]secretin were equipotent to secretin. 4. The fragment secretin (7–27) was unable to recognize VIP receptors and to stimulate adenylate cyclase. The substituted fragment [Gln[9,Asn15]secretin (5–27) recognized these receptors with weak potency but could not activate the enzyme.  相似文献   

3.
Receptors for porcine vasoactive intestinal peptide have been characterized in isolated epithelial cells of rat ventral prostate. The interaction of 125I-labelled VIP with cells was rapid, reversible, specific, saturable and dependent on temperature. Degradation of peptide and receptors was minimized at 15°C. At apparent equilibrium, the binding of 125I-labelled peptide was competitively inhibited by native VIP in the 1·10−10−10−7 M range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 4.0 nM and a low binding capacity (0.12 pmol VIP/mg cell protein), and a low-affinity class with a Kd = 17.8 nM and a high binding capacity (1.6 pmol VIP/mg cell protein). Chicken VIP and porcine secretin exhibited a 7-fold higher and a 7-fold lower affinity than porcine VIP for binding sites, respectively. Glucagon, Leu-enkephalin, Met-enkephalin and somatostatin were ineffective. The presence of high-affinity receptors for VIP together with previous reports on the occurrence of VIP-containing neurones innervating the male genitourinary tract strongly suggest that this peptide may be important in the physiological regulation of the functions of prostatic epithelium.  相似文献   

4.
Summary The distribution of binding sites for atrial natriuretic factor (ANF) and angiotensin II (A II) was investigated in the central nervous system (CNS) of the clawed toad Xenopus laevis by means of in vitro autoradiography using [125I]-rat ANF(99–126) or [125I] [Val5] A II and [125I]human A II as labeled ligands. The highest densities of specific ANF-binding were detected in the nucleus habenularis, thalamic regions, hypophyseal pars nervosa and nucleus interpeduncularis. Moderate ANF-binding was found in the bulbus olfactorius, pallium, septum, striatum, lateral forebrain bundle, nucleus infundibularis, hypophyseal pars distalis and tectum. The highest levels of specific A II binding sites were observed in the nucleus praeopticus, nucleus habenularis, hypophyseal pars nervosa and pars distalis, whereas the amygdala contained moderate A II binding. The existence of specific binding sites for ANF and A II in the CNS of Xenopus laevis suggests that both peptides act as neurotransmitters or neuromodulators in the amphibian CNS. The co-localization of dense binding sites for both peptides in the nucleus habenularis, hypophyseal pars nervosa and pars distalis supports the view that ANF and A II have opposite regulatory functions in these regions.  相似文献   

5.
Binding sites for calcitonin and calcitonin gene-related peptide are widely distributed in the central nervous system. In this study, binding of [125I]-alpha-rat calcitonin gene-related peptide and [125I]-salmon calcitonin in adjacent sections of rat brain revealed clearly distinct patterns of binding in most regions although in some restricted areas such as parts of the ventral striatum, including the nucleus accumbens, there was some overlap in the patterns of binding. In the primary olfactory cortex, which bound only calcitonin gene-related peptide, salmon calcitonin was very weak in inhibiting the binding of calcitonin gene-related peptide. In the nucleus accumbens, high affinity binding of calcitonin and calcitonin gene-related peptide at their homologous receptors was observed, with affinity constants for calcitonin and calcitonin gene-related peptide of 1.4 × 109 M−1 and 1.2 × 109 M−1 respectively. Cross competition studies in this nucleus demonstrated that salmon calcitonin was able to compete for [125I]-rat calcitonin gene-related peptide labelled sites with high affinity, with an affinity constant of 0.8 × 109 M−1. However, rat calcitonin gene-related peptide was less potent in inhibiting the binding of [125I]-salmon calcitonin labelled sites with only 28% inhibition at 10−6M. Further characterization of the calcitonin sensitive calcitonin gene-related peptide labelled sites demonstrated that a range of calcitonin analogs inhibited the binding of [125I]-rat calcitonin gene-related peptide with the same order of potency as the analogs competed for [125I]-salmon calcitonin labelled sites. Digital substraction mapping revealed calcitonin-sensitive calcitonin gene-related peptide binding sites over parts of the ventral striatum, including mid-caudal nucleus accumbens and fundus striati; over the lateral border of the lateral bed nucleus of the stria terminalis; part of the central amygdaloid nucleus; the organum vasculosum of the lamina terminalis and area postrema and over the wings of the dorsal raphe.These results demonstrate the existence of a new subtype of calcitonin/calcitonin gene-related peptide binding site, which has high affinity for the two otherwise biochemically distinct peptides.  相似文献   

6.
We have investigated the interaction of VIP and secretin with two human lung carcinoma cell lines in cultures, SW-900 and Calu-1. 125I-labeled VIP binds to and is inactivated by SW-900 and Calu-1 cells in a time- and temperature-dependent manner. The rates of binding and of inactivation were higher at 30°C than at 15°C. At equilibrium, native VIP competitively inhibited the binding of 125I-VIP in the 10?10?10?7M range, half-maximal inhibition being observed at 1.2 nM in SW-900 cells and at 1.1 nM VIP in Calu-1 cells. Scatchard analysis indicated two classes of binding sites with similar characteristics in both cell lines. SW-900 cells have 27 600 sites with a high affinity (Kd = 0.34 nM) and 1062 000 sites with a low affinity (Kd = 61.4 nM). Calu-1 cells have 36 300 sites with a high affinity (Kd = 0.33 nM) and 1148 000 sites with a low affinity (Kd = 78.6 nM). Secretin inhibited tracer binding but with a 5000 times lower potency than native VIP in both cell lines.  相似文献   

7.
Abstract

The distribution of [3H]kainic acid binding sites was studied in the primate brain using semiquantitative autoradiography. The highest levels of binding were observed in the hippocampal area CA3 and the dentate gyrus. The deep layers of pyriform, cingulate and insular cortex, the central nucleus of the amygdala and the caudate nucleus also displayed high levels of [3H]kainic acid binding. Although these areas receive putative excitatory amino acid-containing afferents, other regions containing a similar input displayed low levels of binding. Some similarities were apparent between the distribution of binding sites and pathological changes in human neurodegenerative disorders such as temporal lobe epilepsy.  相似文献   

8.
The regional distribution and in vivo binding of the dopamine analog 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalen (ADTN) was studied in the brain. The highest density of binding sites was in the striatum, with virtually no binding in the cerebellum. The binding of [3H]ADTN reflects an occupation of specific dopamine sites because the binding was diminished by the simultaneous administration of the dopamine antagonist haloperidol or the dopamine precursorl-3,4-dihydroxyphenylalanine (l-dopa). Chronic administration of haloperidol orl-dopa prior to assaying for in vivo binding resulted in an increase in the number of sites for [3H]ADTN which correlates to the increase observed in in vitro assays following long-term treatment with these agents. The subcellular distribution of in vivo labeled ADTN sites in the caudate nucleus indicate a high density of specific binding sites in the microsomal fraction, P3. Overall, these data demonstrate that the aminotetralins, such as ADTN, which bind with high affinity to the dopamine receptor in the caudate nucleus in vitro and in vivo, can provide precise information on the topography of this receptor.  相似文献   

9.
Abstract

Using the specific monoiodinated NPY analog [Leu31,Pro34]-NPY we have localized NPY binding sites of the Y1 type in forebrain areas of the rat. The resulting receptor autoradiograms were compared with the regional distribution and cellular localization of the mRNA encoding Y1 receptor as demonstrated by in situ hybridization histochemistry. High densities of Y1 binding sites were present in the cerebral cortex, the claustrum, the thalamus and the medial mammillary nucleus, while moderate densities of Y1 binding sites were observed in the amygdalahippocampal complex. Lower binding densities were observed in septal nuclei, most hypothalamic nuclei and the circumventricular organs. High levels of Y1 mRNA were observed in the granula cell layer of the hippocampal dentate gyrus, several thalamic nuclei and the hypothalamic arcuate nucleus, while moderate levels of Y1 mRNA were seen in the frontoparietal cortex, several thalamic nuclei, the hippocampal pyramidal layers, the subiculum, the olfactory tubercle, the claustrum and a number of hypothalamic nuclei. Using the hypothalamic arcuate nucleus as an example, the distribution of immunoreactive NPY, Y1 mRNA and Y1 binding sites was compared, and possible implications of Y1 mediated actions within this nucleus are discussed. The present study further enlightens the anatomical distribution of NPY binding sites of the Y1 type within the central nervous system of the rat, and extends the understanding of central actions of NPY mediated via this type of receptor.  相似文献   

10.
C. Barberis 《FEBS letters》1983,162(2):400-405
Characterization of specific vasopressin binding sites to rat hippocampal membranes has been assayed using tritiated lysine-vasopressin labelled on the tyrosyl residue. At 30°C specific [3H]vasopressin binding was saturable. The estimated equilibrium dissociation constant was 7.1 nM, the mean maximal binding capacity was 78 fmol/mg protein. Arginine-vasopressin has a high affinity (Kd = 2.8 nM) and dDAVP has a low affinity (Kd = 249 nM) for hippocampal synaptic membranes. (OH)AVP and Phe2Orn8VT are at least as active as AVP in inhibiting [3H]vasopressin binding. Adenylate cyclase was activated by VIP and inhibited by PIA, but not affected by lysine-vasopressin.  相似文献   

11.
We have documented and characterized the down-regulation of the125I-secretin binding sites and the associated desensitization of the secretin receptor-cAMP system in rat gastric glands. Secretin induced a rapid decrease of the high-affinity125I-secretin binding sites with t1/2=30 min at 37°C. Half-maximal down-regulation and desensitization occurred at 10–9 M secretin, a physiological concentration corresponding to the half-maximal activation of the secretin receptor. The Scatchard parameters of the low-affinity125I-secretin binding sites were unaffected by the pretreatment. This desensitization is heterologous in view of the loss of responsiveness to the truncated glucagon-like peptide 1 (TGLP-1), and pharmacologically selective since the sectetin-related analogue VIP (10–7 M) does not alter the secretin-induced cAMP generation in rat gastric glands. The glycoprotein nature of the secretin receptor has also been demonstrated using WGA-agarose affinity chromatography of the solubilized125I-secretin receptor complex.  相似文献   

12.
The regional distribution of poly(A)+ RNA was examined in sections of Styela oocytes and fertilized eggs by in situ hybridization with [3H]poly(U). The nucleus and cytoplasm of previtellogenic oocytes contain equivalent densities of [3H]poly(U) binding sites. The concentration of these sites is reduced in the cytoplasm, but not the nucleus, during vitellogenesis. Consequently, the germinal vesicle (GV) plasm of mature oocytes is characterized by an eightfold elevation in [3H]poly(U) binding activity relative to the surrounding cytoplasm. The distinctive cytoplasmic regions of the mature oocyte do not exhibit differential concentrations of [3H]poly(U) binding sites. Following fertilization which triggers GV breakdown, meiosis, and ooplasmic segregation, the high density of [3H]poly(U) binding sites characteristic of the GV plasm is conserved in the basophilic cytoplasm during its extensive migration and eventual accumulation in the animal hemisphere of the egg. The insensitivity of the [3H]poly(U) binding sites of the basophilic cytoplasm to actinomycin D suggests that they are of maternal origin. It is concluded that maternal poly(A)+ RNA is subject to differential accumulation in the GV plasm and its derivative ooplasm during the early development of Styela.  相似文献   

13.
Analogs of vasoactive intestinal peptide (VIP) were synthesized and screened as bronchodilators with the ultimate goal of enhancing the potency and extending the duration of action of the native peptide. Several design approaches were applied to the problem. First, the amino acid residues required for receptor binding and activation were identified. A model of the active pharmacophore was developed. With knowledge of the secondary structure (NMR) of the peptide, various analogs were synthesized to stabilize α-helical conformations. Having achieved a level of enhanced bronchodilator potency, our approach then concentrated on identification of the sites of proteolytic degradation and synthesis of metabolically-stable analogs. Two primary cleavage sites on the VIP molecule were identified as the amide bonds between Ser25-Ile26 and Thr7-Asp8. This information was used to synthesize cyclic peptides which incorporated disulfide and lactam ring structures. Analog work combined the best multiple-substitution sites with potent cyclic compounds which resulted in identification of a cyclic lead peptides. This compound, Ro 25-1553, exhibited exceptionally high potency, metabolic stability, and a long duration of action and may be an effective therapeutic for the treatment of bronchospastic diseases. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
VIP stimulated adenylate cyclase activity in homogenates of some areas of rat brain that are rich in this peptide, e.g., cerebral cortex, hypothalamus and hippocampus, as well as in cerebellar cortex, where VIP content is low. No stimulation occurred in caudate nucleus or brainstem. The enzyme stimulation was inhibited by Ca2+, but unaffected by guanine nucleotides. Synthetic fragments of VIP (VIP6?28 & VIP14–28) neither stimulated cyclase activity nor inhibited VIP-induced stimulation.  相似文献   

15.
I Creese  D R Burt  S H Snyder 《Life sciences》1975,17(6):933-1001
3H-Dopamine and 3H-haloperidol bind with high affinity and selectivity to synaptic dopamine receptors in membrane preparations of the calf caudate. Binding of both ligands shows marked regional variations with greatest density in caudate, putamen, globus pallidus, nucleus accumbens and olfactory tubercle, areas rich in dopamine nerve terminals. The rank-order of phenothiazines and related agents as well as catecholamines in displacing both dopamine and haloperidol binding closely parallels their pharmacological potencies and affinities for the dopamine-sensitive adenylate cyclase. Dopamine's affinity for specific 3H-dopamine binding sites is 100 times its apparent affinity for the dopamine sensitive adenylate cyclase. Agonists have about 50 times more affinity for dopamine than haloperidol sites, whereas antagonists display about 100 times greater affinity for haloperidol than dopamine sites.  相似文献   

16.
The aim of present study was to develop a respirable powder (RP) of a shortened vasoactive intestinal peptide (VIP) analog for inhalation. VIP and C‐terminally truncated VIP analogs were synthesized with a solid‐phase method. A structure‐activity relationship (SAR) study was carried out in terms with binding and relaxant activities of the peptides. Prepared RP formulation of a shortened VIP analog was physicochemically characterized by morphological, in vitro aerodynamic, and pharmacological assessments. The SAR study demonstrated that the N‐terminal 23 amino acid residues were required for biological activity of VIP. Upon chemical modification of VIP(1–23), [R15, 20, 21, L17]‐VIP(1–23) was newly developed, which had higher binding activity in rat lung and smooth muscle relaxant effect in mouse stomach than VIP(1–23). The [R15, 20, 21, L17]‐VIP(1–23)‐based RP, [R15, 20, 21, L17]‐VIP(1–23)/RP, exhibited fine in vitro inhalation performance. Airway inflammation evoked by sensitization of antigen in rats was attenuated by pre‐treatment with the [R15, 20, 21, L17]‐VIP(1–23)/RP at a dose of 50 μg‐[R15, 20, 21, L17]‐VIP(1–23)/rat as evidenced by a 70% reduction of recruited inflammatory cells in bronchoalveolar lavage fluid. On the basis of these results, [R15, 20, 21, L17]‐VIP(1–23)/RP might be a promising agent for treatment of airway inflammatory diseases.  相似文献   

17.
Abstract: Vasoactive intestinal polypeptide (VIP) is a neuropeptide that causes neurone excitation in the brain cortex. VIP receptors were studied in subcellular fractions isolated from rat cerebral cortex. The receptor binding of 125I-VIP was greatest in the synaptosomal fraction at membrane protein concentrations of 50–100 μg/ml, a temperature of 37°C, and a pH from 7.4 to 7.7. Under these conditions the concomitant proteolytic degradation of 125I-VIP was approximately 10% after 60 min of incubation. The binding of 60 pmoI/L 125I-VIP reached steady-state after 60 min and was maintained up to 240 min. At steady-state, the receptor-bound 125I-VIP was displaced by unlabelled VIP with half-maximal inhibition (IC50) at a concentration of approximately 3 nmol/L. The binding of 125I-VIP in the concentration range of 10 pmol/L to 6 nmol/L was superimposable on the VIP displacement curve. The Scatchard plot was curvilinear with upward concavity, which can be interpreted to represent two classes of receptors with KD of 2.5 and 125 nmol/L, one class of receptors with negative cooperative interactions, or heterogeneity of the 125I- VIP preparation. The total amount of receptors was 9.5 pmol/mg of membrane protein. Secretin displaced receptor-bound 125I-VIP with an IC50 of 0.3 μmol/L, whereas glucagon snowed no inhibition up to 1 μmol/L. The dissociation of receptor-bound 125I-VIP was biexponential with rate constants (k2) of 4.1 – 10?3 and 0.18 min?1 corresponding to half-times of approximately 170 and 4 min, respectively. The size of the two components was dependent on the duration of the 125I-VIP association period. Initially, both components increased; at steady-state, the rapid component declined, whereas the slow component increased to approximately 70% after 120 min. The association rate constants (k1) were estimated from the initial velocities as 106 and 4. 106 L. mol?1. min?1, and a calculation of the KD as k2/k1 gave values of 4.1 and 45 nmol/L, respectively. In conclusion, the presence of receptors for VIP on synaptosomes from the cerebral cortex supports the role of VIP as a neurotransmitter in the brain. The receptor binding was heterogeneous, suggesting the presence of two classes of receptors. The binding kinetics showed a time-dependent transition of VIP receptors from a low- to a high-affinity state, which may be interpreted as desensitisation of synapses to the action of VIP.  相似文献   

18.
The specific binding of VIP to guinea pig brain membranes was tested by 1/ the ability of eight VIP and secretin analogs and fragments to inhibit the binding of 125I-VIP and 2/ the capacity of the same peptides to influence basal and VIP-stimulated adenylate cyclase activities. Among all peptides tested, only VIP, secretin, [Val5] secretin, and [Gln9, Asn15] secretin (5–27) were able to inhibit 125I-VIP binding. The adenylate cyclase activity was stimulated by VIP, secretin and [Val5] secretin. [Gln9, Asn15] secretin (5–27) although inactive per se was able to inhibit the VIP-stimulated adenylate cyclase activity competitively.  相似文献   

19.
In our developed reverse phase high performance liquid chromatography, four forms of M125I-VIP have been isolated free from unlabled VIP and other iodinated components. The quicker eluting M125I-VIP forms (oxidised and reduced) have a consistently and significantly low non-specific binding with specific target cells of VIP (HT-29) as compared to the late eluting forms of VIP. The retention time is considerably increased when the molecule of VIP is fully iodinated.  相似文献   

20.
Bovine t hymic peptide extract (1–100 g/ml) is shown to completely inhibit the binding of [125I]VIP to rat blood mononuclear cells, lymphoid cells of spleen, and liver plasma membranes. In the three models, the bovine thymic peptide extract inhibits [125I]VIP binding with a potency that is 4000–7000 times lower than that of the native VIP, on a weight basis. In rat liver plasma membranes, the bovine thymic peptide extract stimulates adenylate cyclase with a maximal efficiency that is similar to that of VIP. At maximal doses, VIP and thymic peptide extract do not exert an additive effect on adenylate cyclase, suggesting that the activation of the enzyme by the bovine thymic peptide extract occurs through VIP receptors. Finally, no VIP-like immunoreactivity was detected in the thymic peptide extract using an antiserum raised against mammalian VIP. All these data suggest the presence in the bovine thymic peptide extract of a new substance which behaves as a VIP agonist in rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号