首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.

Background

The γ-aminubutyrate (GABA) shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD), the mitochondrial enzymes GABA transaminase (GABA-T; POP2) and succinic semialdehyde dehydrogenase (SSADH). We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs) and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported.

Principal Findings

To elucidate the role of succinic semialdehyde (SSA), γ-hydroxybutyrate (GHB) and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants.

Significance

We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.  相似文献   

2.
Abstract: The possibility that γ-hydroxybutyrate (GHB), a metabolite of γ-aminobutyric acid (GABA), may play a role in the CNS has recently come to attention. We describe here a sensitive and specific mass fragmento-graphic technique that allows the measurement of picomole amounts of GHB in single rat brain areas. Moreover, we show that GHB can accumulate postmortem, an effect that is blocked by the use of microwave irradiation to kill the animals. To understand further the relationship between GABA and GHB formation, we treated rats with drugs known to inferfere with GABA metabolism at different levels and concomitantly measured GABA and GHB in cerebral cortex and cerebellum. Isoniazide, which blocks the formation of GABA, also decreases GHB. Blockers of the catabolism of GABA, such as aminooxyacetic acid and γ-acetylenic GABA, increase GABA levels and decrease those of GHB. Sodium dipropylacetate increases both GABA and GHB, supporting the hypothesis that this effective antiepileptic drug also blocks in vivo the enzyme that converts succinic semialdehyde to succinic acid.  相似文献   

3.
Glutamate decarboxylase (l-glutamate 1-carboxylyase, E.C. 4.1.1.15, GAD) is the rate-limiting enzyme for the production of γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrates and invertebrates. We report the identification, isolation and characterization of cDNAs encoding GAD from the parasitic arthropods Ctenocephalides felis (cat flea) and Rhipicephalus microplus (cattle tick). Expression of the parasite GAD genes and the corresponding Drosophila melanogaster (fruit fly) GAD1 as well as the mouse GAD65 and GAD67 genes in Escherichia coli as maltose binding protein fusions resulted in functional enzymes in quantities compatible with the needs of high throughput inhibitor screening (HTS). A novel continuous coupled spectrophotometric assay for GAD activity based on the detection cascade GABA transaminase/succinic semialdehyde dehydrogenase was developed, adapted to HTS, and a corresponding screen was performed with cat flea, cattle tick and fruit fly GAD. Counter-screening of the selected 38 hit substances on mouse GAD65 and GAD67 resulted in the identification of non-specific compounds as well as inhibitors with preferences for arthropod GAD, insect GAD, tick GAD and the two mouse GAD forms. Half of the identified hits most likely belong to known classes of GAD inhibitors, but several substances have not been described previously as GAD inhibitors and may represent lead optimization entry points for the design of arthropod-specific parasiticidal compounds.  相似文献   

4.
The recent identification of two genes encoding distinct forms of the GABA synthetic enzyme, glutamate decarboxylase (GAD), raises the possibility that varying expression of the two genes may contribute to the regulation of GABA production in individual neurons. We investigated the postnatal development the two forms of GAD in the rat cerebellum. The mRNA for GAD67, the form which is less dependent on the presence of the cofactor, pyridoxal phosphate (PLP), is present at birth in presumptive Purkinje cells and increases during postnatal development. GAD67 mRNA predominates in the cerebellum. The mRNA for GAD65, which displays marked PLP-dependence for enzyme activity, cannot be detected in cerebellar cortex by in situ hybridization until P7 in Purkinje cells, and later in other GABA neurons. In deep cerebellar nuclei, which mature prenatally, both forms of GAD mRNA can be detected at birth. The amounts of immunoreactice GAD and GAD enzyme activity parallel changes in mRNA levels. We suggest that the delayed appearance of GAD65 is coincident with synapse formation between GABA neurons and their targets during the second postnatal week. GAD67 mRNA may be present prior to synaptogenesis to produce GABA for trophic and metabolic functions.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

5.
Abstract— The activity of L–glutamate decarboxylase (EC 4.1.1.15) (GAD) in various mouse tissues was determined by five different methods, namely, the radiometric CO2 method, column separation, electro–phoretic separation, the filtration method, and amino acid analysis. Results from the latter four methods agreed well, showing that brain had the highest activity, 4.27 nmol/min/mg protein (100%), followed by heart (7.4%), kidney (6.3%) and liver (1.5%). Measurement of brain GAD using the radiometric CO2 assay method agreed with the other techniques. However, in heart, kidney, and liver, the GAD activities measured by the CO2 method were about 3–4 times higher than those obtained by the GABA method, suggesting that the CO2 method does not give a valid measurement of GAD activity in a crude non–neural tissue preparation. GAD activity also was detected in adrenal gland but not in pituitary, stomach, testis, muscle, uterus, lung, salivary gland, or spleen. GAD from brain, spinal cord, heart, kidney and liver were further compared by double immunodiffusion, enzyme inhibition by antibody, and microcomplement fixation using antibody against GAD purified from mouse brain. GAD from brain and spinal cord appear to be identical as judged from the following results: the immunoprecipitin bands fused together without a spur; the enzyme activity was inhibited by anti–GAD to the same extent; and the microcomplement fixation curves were similar in both the shape of the curve and the extent of fixation. No crossreactivity was observed between GAD from heart, kidney or liver and antibody against brain GAD in all the immunochemical tests described above, suggesting that GAD in non–neural tissues is different from that in brain and spinal cord.  相似文献   

6.
7.
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the NADP-dependent oxidation of succinic semialdehyde to succinate, the final step of the GABA shunt pathway. SSADH deficiency in humans is associated with excessive elevation of GABA and γ-hydroxybutyrate (GHB). Recent studies of SSADH-null mice show that elevated GABA and GHB are accompanied by reduced glutamine, a known precursor of the neurotransmitters glutamate and GABA. In this study, cerebral metabolism was investigated in urethane-anesthetized SSADH-null and wild-type 17-day-old mice by intraperitoneal infusion of [1,6-13C2]glucose or [2-13C]acetate for different periods. Cortical extracts were prepared and measured using high-resolution 1H-[13C] NMR spectroscopy. Compared with wild-type, levels of GABA, GHB, aspartate, and alanine were significantly higher in SSADH-null cortex, whereas glutamate, glutamine, and taurine were lower. 13C Labeling from [1,6-13C2]glucose, which is metabolized in neurons and glia, was significantly lower (expressed as μmol of 13C incorporated per gram of brain tissue) for glutamate-(C4,C3), glutamine-C4, succinate-(C3/2), and aspartate-C3 in SSADH-null cortex, whereas Ala-C3 was higher and GABA-C2 unchanged. 13C Labeling from [2-13C]acetate, a glial substrate, was lower mainly in glutamine-C4 and glutamate-(C4,C3). GHB was labeled by both substrates in SSADH-null mice consistent with GABA as precursor. Our findings indicate that SSADH deficiency is associated with major alterations in glutamate and glutamine metabolism in glia and neurons with surprisingly lesser effects on GABA synthesis.  相似文献   

8.
Glutamic acid decarboxylase (GAD) is an enzyme that catalyzes the decarboxylation of glutamate to γ‐aminobutyric acid (GABA) and CO2. It has been discovered that the GAD has a restricted tissue distribution and it is highly expressed in the cytoplasm of GABAergic neurons in the CNS where GABA is used as a neurotransmitter. We have examined the microstructure of ganglionic neurons and nerves arising from the CNS and describe here the immunocytochemical localization of GAD isoforms to reveal the ecophysiological significance of GABA for the web‐building spider's behavior. In the CNS of the cobweb spider, Achaearanea tepidariorum, immunocytochemical localization of GAD isoforms can be detected in the neurons and neuropiles of the optic lobes. In addition, GAD‐like immunoreactive cell bodies are observed at the intrinsic cell bodies near the central body and the symmetric cell clusters of the protocerebrum. However, the fibrous masses within the protocerebral ganglion are not labeled at all. Based on its interconnection with other regions of the CNS, our findings suggest that the central body in the web‐building spider may act as an association center as well as a visual center.  相似文献   

9.
An antiserum to gamma-aminobutyric acid (GABA) was tested for the localization of GABAergic neurons in the central nervous system using the unlabeled antibody enzyme method under pre- and postembedding conditions. GABA immunostaining was compared with glutamate decarboxylase (GAD) immunoreactivity in the cerebellar cortex and in normal and colchicine-injected neocortex and hippocampus of cat. The types, distribution, and proportion of neurons and nerve terminals stained with either sera showed good agreement in all areas. Colchicine treatment had little effect on the density of GABA-immunoreactive cells but increased the number of GAD-positive cells to the level of GABA-positive neurons in normal tissue. GABA immunoreactivity was abolished by solid phase adsorption to GABA and it was attenuated by adsorption to beta-alanine or gamma-amino-beta-hydroxybutyric acid, but without selective loss of immunostaining. Reactivity was not affected by adsorption to glutamate, aspartate, taurine, glycine, cholecystokinin, or bovine serum albumin. The concentration (0.05-2.5%) of glutaraldehyde in the fixative was not critical. The antiserum allows the demonstration of immunoreactive GABA in neurons containing other neuroactive substances; cholecystokinin and GABA immunoreactivities have been shown in the same neurons of the hippocampus. In conclusion, antisera to GABA are good markers for the localization of GABAergic neuronal circuits.  相似文献   

10.
In previous work, we showed a robust γ-aminobutyric acid (GABAergic) synaptic input onto embryonic luteinizing hormone-releasing hormone (LHRH) neurons maintained in olfactory explants. In this study, we identify GABAergic neurons in olfactory pit (OP) of embryonic micein vivoand study, using patch-pipet whole-cell current and voltage clamp techniques, synaptic interactions of these neurons in explant cultures.In vivo,glutamate decarboxylase (GAD, the enzyme which synthesizes GABA) mRNA was first detected in nasal regions on Embryonic Day (E) 11.5. From E12.5 to E13.5, robust GAD expression was localized to cells primarily in the ventral aspect of the OP. GAD mRNA was not detected over dorsally located cells in olfactory sensory or respiratory epithelium. In addition, GAD mRNA was not observed in cells along olfactory axons. GAD mRNA was dramatically reduced in the OP/vomeronasal organ by E16.5. Using antibodies against both GABA and GAD, immunopositive axonal-like tracts were detected in the nasal septum on E12.5. GABAergic staining decreased by E13.5. To examine synaptic interactions of these GABAergic cells, embryonic olfactory explants were generated and maintained in serum-free media. As explants spread, neuron-like cells migrated into the periphery, sometimes forming ganglion-like clusters. Cells were recorded, marked intracellularly with Lucifer Yellow and post-fixation, immunocytochemically examined. Forty-six cells, typically multipolar, were GABAergic, had resting potentials around −50 mV, and exhibited spontaneous action potentials which were generated by spontaneous depolarizing GABAergic (GABAA) synaptic activity. OP neurons depolarized in response to GABA by increasing Clconductance. The biophysical properties of OP-derived GABAergic neurons were distinct from those reported for olfactory receptor neurons but similar to embryonic LHRH neurons. However, unlike LHRH neurons, GABAergic neurons did not migrate large distances in olfactory explants or appear to leave the olfactory pitin vivo.  相似文献   

11.
Abstract— L-Glutamate decarboxylase (EC 4.1.1.15) (GAD), the enzyme responsible for the formation of GABA, has been purified to homogeneity from mouse brain (Wu et at., 1973) and antibodies specific for neuronal GAD have been obtained (SAITO et al., 1974a). The present report describes the purification of GAD from bovine heart more than 2000-fold over the homogenate by initial solubilization with Triton X-100. subsequent fractionation with ammonium sulfate, column chromatography on DEAE cellulose, calcium phosphate gel, and DEAE-Sephadex, and gel filtration. At least two forms of GAD have been observed in bovine heart preparations; one of them appears as a high molecular weight form (Peak I, MW 360,000) and the other one as a low molecular weight form (Peak II, MW 105,000). Cysteine sulfinic acid and cysteic acid, both precursors of taurine, had no effect on the purified heart enzyme or on neuronal GAD at 10 mM, suggesting that cysteine sulfinic acid and cysteic acid probably are not substrates for any species of GAD described above. The heart enzyme and neuronal GAD differ in several respects. First, they are different immunochemically as judged by the lack of cross reactivity between the purified heart enzyme and the antibody against purified neuronal GAD. Second, they are different biochemically. 5,5′-Dithiobis[2-nitrobenzoic acid] (DTNB). one of the most potent inhibitors of neuronal GAD [Ki= 1.0 × 10?8M] inhibits the heart enzyme only to a small extent at 1 mM. On the other hand, pyruvic acid, which inhibits the heart enzyme to an extent of 90% at 10 mM, only inhibits the neuronal enzyme slightly. Third, they are different in their substrate specificity. The neuronal enzyme can catalyze α-decarboxylation of both L-glutamate and L-aspartate while the heart enzyme can use only L-glutamate as substrate. Moreover, an unidentified product probably derived from L-glutamate is obtained in the reaction mixture of the heart enzyme but is not observed with the brain enzyme, suggesting that the heart enzyme may catalyze a reaction converting L-glutamate to products other than GABA. It is therefore concluded that heart GAD and neuronal GAD are two different entities. Work is in progress to determine whether the heart enzyme is related to the glial enzyme. Should the antibody against the heart enzyme cross-react with the glial enzyme, the role of the glial enzyme in GABA function can then be studied by immunochemical and immunocytochemical methods.  相似文献   

12.
gamma-Hydroxybutyrate (GHB) is a putative neurotransmitter in brain. We have already demonstrated that it is transformed into gamma-aminobutyrate (GABA) by rat brain slices incubated under physiological conditions. This conversion occurs via a GABA-transaminase reaction. Therefore, succinic semialdehyde, the oxidative derivative of GHB, appears to be the primary catabolite of GHB degradation. Apparently, the kinetic characteristics and pH optimum of GHB dehydrogenase (high Km aldehyde reductase) in vitro do not favor a role for this enzyme in endogenous brain GHB oxidation. However, in the presence of glucuronate, glutamate, NADP and pyridoxal phosphate, pure GHB dehydrogenase, coupled to purified GABA-transaminase does produce GABA from GHB at an optimum pH close to the physiological value and with a low Km for GHB.  相似文献   

13.
Abstract— γ-Vinyl GABA (4-amino-hex-5-enoic acid, RMI 71754) is a catalytic inhibitor of GABA-T in vitro. When given by a peripheral route to mice, it crosses the blood-brain barrier and induces a long-lasting, dose-dependent, irreversible inhibition of brain GABA transaminase (GABA-T). Glutamate decarboxylase (GAD) is only slightly affected even at the highest doses used. γ -Vinyl GABA has little or no effect on brain succinate semialdehyde dehydrogenase, aspartate transaminase and alanine transaminase activities. GABA-T inhibition is accompanied by a sustained dose-dependent increase of brain GABA concentration. From the rate of accumulation of GABA it was estimated that GABA turnover in brain was at least 6.5 μmol/g/h. Based on recovery of enzyme activity the half-life of GABA-T was found to be 3.4 days, that of GAD was estimated to be about 2.4 days. γ -Vinyl GABA should be valuable for manipulations of brain GABA metabolism.  相似文献   

14.
Cultures of dissociated cerebellum from 7-day-old mice were used to investigate the mechanism involved in synthesis and cellular redistribution of GABA in these cultures consisting primarily of glutamatergic granule neurons and a smaller population of GABAergic Golgi and stellate neurons. The distribution of GAD, GABA and the vesicular glutamate transporter VGlut-1 was assessed using specific antibodies combined with immunofluorescence microscopy. Additionally, tiagabine, SKF 89976-A, betaine, β-alanine, nipecotic acid and guvacine were used to inhibit the GAT1, betaine/GABA (BGT1), GAT2 and GAT3 transporters. Only a small population of cells were immuno-stained for GAD while many cells exhibited VGlut-1 like immuno-reactivity which, however, never co-localized with GAD positive neurons. This likely reflects the small number of GABAergic neurons compared to the glutamatergic granule neurons constituting the majority of the cells. GABA uptake exhibited the kinetics of high affinity transport and could be partly (20%) inhibited by betaine (IC50 142 μM), β-alanine (30%) and almost fully (90%) inhibited by SKF 89976-A (IC50 0.8 μM) or nipecotic acid and guvacine at 1 mM concentrations (95%). Essentially all neurons showed GABA like immunostaining albeit with differences in intensity. The results indicate that GABA which is synthesized in a small population of GAD-positive neurons is redistributed to essentially all neurons including the glutamatergic granule cells. GAT1 is not likely involved in this redistribution since addition of 15 μM tiagabine (GAT1 inhibitor) to the culture medium had no effect on the overall GABA content of the cells. Likewise the BGT1 transporter cannot alone account for the redistribution since inclusion of 3 mM betaine in the culture medium had no effect on the overall GABA content. The inhibitory action of β-alanine and high concentrations of nipecotic acid and guvacine on GABA transport strongly suggests that also GAT2 or GAT3 (HUGO nomenclature) could play a role.  相似文献   

15.

Background  

SSADH (aldehyde dehydrogenase 5a1 (Aldh5a1); γ-hydroxybutyric (GHB) aciduria) deficiency is a defect of GABA degradation in which the neuromodulators GABA and GHB accumulate. The human phenotype is that of nonprogressive encephalopathy with prominent bilateral discoloration of the globi pallidi and variable seizures, the latter displayed prominently in Aldh5a1-/- mice with lethal convulsions. Metabolic studies in murine neural tissue have revealed elevated GABA [and its derivatives succinate semialdehyde (SSA), homocarnosine (HC), 4,5-dihydroxyhexanoic acid (DHHA) and guanidinobutyrate (GB)] and GHB [and its analogue D-2-hydroxyglutarate (D-2-HG)] at birth. Because of early onset seizures and the neurostructural anomalies observed in patients, we examined metabolite features during Aldh5a1-/- embryo development.  相似文献   

16.
Summary The formation of GABA from L-glutamate was investigated in homogenates of rat brain, liver, and kidney, using highly purified [14C]-L-glutamic acid as substrate and a thin-layer chromatographic separation of products. In agreement with other workers, liberation of [14C]-CO2 was found to be stoichiometric with GABA formation in brain homogenates, but not in liver or kidney extracts. Subcellular fractionation and dialysis experiments suggested that most of the GABA synthesis in these peripheral tissues, unlike brain, does not occur via a direct decarboxylation of glutamate and requires one or more cofactors other than pyridoxal phosphate. NAD stimulated GABA formation in dialyzed extracts, and inhibition of GABA-transaminase, bothin vitro andin vivo, caused marked inhibition of GABA formation from glutamate in peripheral extracts. Although a very low GAD activity in liver and kidney cannot be excluded, these experiments suggest a major pathway from glutamate to GABA in these homogenates which includes (1) conversion of glutamate to -ketoglutarate by glutamate dehydrogenase or transaminases, (2) conversion of -ketoglutarate to succinic semialdehyde, and (3) formation of GABA from succinic semialdehyde and glutamate by GABA-transaminase.  相似文献   

17.
γ-Hydroxybutyric acid, a reductive catabolite of GABA, has numerous neuropharmacological and neurophysiological properties when injected systematically to animals. Recently, a specific succinic semialdehyde reductase (SSR2) has been isolated from rat brain. This enzyme specifically produces [3H]γ-hydroxybutyrate from [3H]GABA when incubated in vitro with rat brain tissue slices. A specific antibody against this enzyme has been raised in the rabbit and employed to localize by immunocytochemical procedures the sites of γ-hydroxybutyrate synthesis in two regions of rat brain, the nucleus Raphe dorsalis and the median hypothalamus. Light microscopy reveals the presence of numerous SSR2-positive reactions in the cytoplasm of fusiform or ovoid cells. High magnification shows that only neurons of varous sizes are stained; the cytoplasm is uniformly labelled with a few punctate deposits. At the electron microscopic level, some staining appears in the somata of neurons and in fibres or axonal terminals.  相似文献   

18.
Pakchoi plants were grown in 32 mM NO3? nutrient solution with or without 2.5 mM γ-aminobutyric acid (GABA) to investigate metabolite changes, gene and protein expression levels, and the activities of key enzymes related to nitrate metabolism in the leaves over a period of 0–12 days. High-nitrogen treatment enhanced plant growth and the NO3?, NO2?, NH4+, Gln, and Glu contents in the leaves; promoted the gene and protein expression of nitrate reductase (NR) and glutamate decarboxylase (GAD); and increased the activities of NR, nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and GAD. The endogenous GABA concentration in the leaves was enhanced in parallel with the increase in GAD activity. The GABA-treated leaves displayed the greatest increases in the gene and protein expression levels of NR and GAD and in the activities of NR, NiR, GS, GOGAT, and GAD. In addition, accelerated rates of nitrate reduction and assimilation were detected, and these changes occurred concurrently with the observed increases in gene or protein expression and enzyme activity. As a result, the concentrations of NH4+, Gln, Glu, and endogenous GABA were significantly elevated, and the NO3? and NO2? contents were significantly decreased, in GABA-treated leaves compared with plants exposed to nitrogen-rich conditions. Our results reveal a potential positive that GABA may act as a nitrogen source to improve the plant growth and the most prominent effect of decreasing nitrate contents by accelerating NO3? reduction and assimilation. Exogenous GABA plays an important role in reducing the NO3? content of leaves, and thereby improves the ability to harvest leafy vegetables containing higher levels of endogenous GABA.  相似文献   

19.
The synaptic connectivity between rod bipolar cells and GABAergic neurons in the inner plexiform layer (IPL) of the rat retina was studied using two immunocytochemical markers. Rod bipolar cells were stained with an antibody specific for protein kinase C (PKC, α isoenzyme), and GABAergic neurons were stained with an antiserum specific for glutamic-acid decarboxylase (GAD). Some amacrine cells were also labeled with the anti-PKC antiserum. All PKC-labeled amacrine cells examined showed GABA immunoreactivity, indicating that PKC-labeled amacrine cells constitute a subpopulation of GABAergic amacrine cells in the rat retina. A total of 150 ribbon synapses established by rod bipolar cells were observed in the IPL. One member of the postsynaptic dyads was always an unlabeled AII amacrine cell process, and the other belonged to an amacrine-cell process showing GAD immunoreactivity. The majority (n=92) (61.3%) of these processes made reciprocal synapses back to the axon terminals of rod bipolar cells. In addition, 78 conventional synapses onto rod bipolar axons were observed, and among them 52 (66.7%) were GAD-immunoreactive. Thus GABA provides the major inhibitory input to rod bipolar cells.  相似文献   

20.
The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号