首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
VIP and PHI share sequence homology and certain biological actions. Immunocytochemistry and radioimmunoassay were used to see if the two peptides also have similar distributions in the gut of the pig. PHI-immunoreactive fibres were found, like those containing VIP, in all layers of the bowel wall but in lesser numbers. Unlike VIP-immunoreactive nerves, however, which are ubiquitous in the gastrointestinal tract, PHI-containing neurons were numerous in all areas except the fundus, where only few fibres and no ganglion cells were found to be reactive to PHI antibodies. PHI and VIP immunoreactive materials were also quantified by specific radioimmunoassay of tissue extracts. The concentrations of PHI and VIP were similar in all regions of the gut, except in the fundus where the quantities of VIP-immunoreactivity far exceeded those of PHI. The presence of both VIP- and PHI-immunoreactivities in ganglion cells of the sub-mucous plexus allowed investigation of the co-localisation of the peptides. Serial sections through ganglion cells revealed that a major proportion contain both PHI- and VIP-immunoreactivity. Some cells contained VIP alone, or VIP and weak, equivocal immunostaining of PHI, and a sub-population contained no peptide-immunoreactivity. The presence of both VIP- and PHI-immunoreactivities in the same ganglion cell supports the recent reports of the isolation and characterisation, using genetic technology, of their common precursor molecule. The finding of VIP and not PHI in the fundic region suggests the differential expression of the two peptides.  相似文献   

3.
Studies on the distribution of PHI in mammals   总被引:6,自引:0,他引:6  
We have developed a sensitive and specific radioimmunoassay to PHI and investigated its distribution in four mammalian species (man, cat, guinea-pig and rat). PHI was present in high concentrations, not only in intestine but also in brain, respiratory tract, urogenital tract and other peripheral tissues. Its distribution was similar to that of VIP and in each tissue examined there was always a significant correlation between the concentrations of these two peptides. In a survey of endocrine tumours, PHI was found to be produced only in those tumours that also produced VIP. In addition PHI was only elevated in the plasma of patients that also had high plasma VIP concentrations. This parallel distribution and release was found to be due to the co-synthesis of VIP and PHI in the same pro-hormone peptide. However, the variable ratio of VIP/PHI in different anatomical areas suggest that in these areas there is a different post-translational enzyme processing of the precursor protein.  相似文献   

4.
J M Polak  S R Bloom 《Peptides》1984,5(2):225-230
VIP is present in the genitourinary system of man and animals. In man the highest concentrations are found in the penis, the uterus and vagina and in the urinary bladder. VIP nerves heavily innervate the erectile tissue of the male external genitalia, the uterine smooth muscle and blood vessels, the seromucous glands of the cervix, and the lamina propria and vaginal epithelium. In the urinary bladder, VIP nerves are located beneath the transitional epithelium, in the lamina propria and in the smooth muscle. Other areas well innervated by VIP nerves include the prostate, seminal vesicles and vasa deferentia. Chemical (phenol- and 6-OHDA) or surgical (hypogastric or pelvic nerve section) extrinsic denervation fail to deplete the genitourinary system of its VIP content, supporting the view that VIP-containing nerves originate from local ganglion cells. Indeed, neuronal cell bodies containing VIP are seen in the paracervical ganglia of the female genitalia, the para- or intramural bladder ganglia and scattered through the base of the cavernosum body, the neck of the bladder and the prostate. The finding of elevated levels of VIP in the local circulation after induced penile erection in man and mammals and the ability of VIP to relax the detrusor muscle of the bladder suggests that the peptide may be involved in penile erection and bladder relaxation, as does the marked VIP depletion in the penis or bladder in patients suffering from diabetic impotence or bladder instability.  相似文献   

5.
Summary Cholecystokinin-like immunoreactivity has been demonstrated by radioimmunoassay and immunocytochemistry in the spinal cord of various mammals, in particular in nerve fibers of the superficial layers of the posterior column, but had not been detected in neuronal cell bodies. We report immunohistochemical evidence for the presence of a group of cholecystokinincontaining neuronal cell bodies in the lumbar spinal cord of the rat. This group of cells is only visualized after direct injection of colchicine into the spinal cord and is located near the central canal in the intermedio-medial nucleus of area X of Rexed.  相似文献   

6.
Summary The distribution of vasoactive intestinal polypeptide-immunoreactive (VIP-IR) neurons in the lower medulla oblongata and the spinal cord has been analyzed in guinea pigs. This study includes results obtained by colchicine treatment and transection experiments. In the spinal cord, numerous VIP-IR varicosities were observed in the substantia gelatinosa of the columna dorsalis; some were also found in the substantia intermedia and the columna anterior. The spinal VIP-IR nerve fibers were mainly of intraspinal origin and oriented segmentally. VIP-IR nuclei in the spinal cord extended dorsally into corresponding regions of the caudal medulla oblongata, namely from the substantia intermedia medialis and lateralis into the vagus-solitarius complex and from the nucleus spinalis lateralis into the area of the nucleus reticularis lateralis. Additional VIP-IR perikarya were observed in the pars caudalis of the nucleus spinalis nervi trigemini. The VIP-IR nuclei within the caudal medulla oblongata probably form a continuous system with those localized within the spinal cord. They may be involved functionally in the modulation of cardiovascular and respiratory regulation in the guinea pig.Supported by the DFG, Carvas SFB 90  相似文献   

7.
Summary A dorsal-horn fiber system is revealed in the thoracic spinal cord of guinea pig by means of substance P immunocytochemistry. This system has repeated craniocaudal and/or caudo-cranial extensions and possesses five main components: (1) a superficial network, situated beneath the dorsolateral surface of the spinal cord. This network is connected with the dorsal root fibers and the accumulations of substance P-like immunoreactive (SP-LI) fibers in the Lissauer's tract; (2) an accumulation of SP-LI fibers in the Lissauer's tract at the border of the dorsal horn; (3) two collateral SP-LI fascicles (one lateral and one medial) emerging from the SP-LI fiber accumulation in the Lissauer's tract; (4) a transversal fascicle running through laminae III–V, and (5) an SP-LI network in the region of the lateral spinal cord nucleus. These components of the dorsal-horn fiber system show widespread connections with ipsi-and contralateral spinal cord areas, connecting them in cranio-caudal and/or caudo-cranial directions. The SP-LI dorsal-horn system has close relationship with groups of preganglionic sympathetic cells in the intermediate zone of the spinal cord, respective with the vegetative network of this zone. It is suggested that some fibers of the dorsal-horn system that originate from dorsal-root ganglia may represent primary sensory or visceral afferents. It is likely that the dorsal-horn fiber system and the vegetative network of the thoracic spinal cord may represent the morphological basis for the integration of (1) the central and peripheral vegetative nervous systems, and (2) the somatic and vegetative nervous system.  相似文献   

8.
Bombesin (BN), substance P-(SP) and somatostatin (SRIF) were measured in individual laminae of the cervical, thoracic and lumbar (L) spinal cord of control cats, and in the L6 segment of cats receiving a spinal hemisection (L2) or deafferentation via dorsal rhizotomy at L6, 7, S1. The interlaminar distribution of BN, SP, and SRIF was remarkably similar. Highest concentrations were found in the superficial dorsal horn, and progressively less was found proceeding ventrally. Some intersegmental variations in peptide concentration within a single lamina were found. Dorsal rhizotomy caused a significant decline in BN, SP and SRIF in lamina I-III, therefore all three peptides appear to be contained in dorsal root ganglion cells. Evidence is presented for the existence of ascending BN and SP projections originating in lamina I-III and VII, for a descending SRIF pathway terminating in lamina VIII, and for an ascending BN path in lamina VIII. Dorsal root afferents to lamina VIII influence levels of BN, SP and SRIF.  相似文献   

9.
Summary Distribution of serotonin fibers in the spinal cord of the dog was investigated by means of a modified PAP method; a rabbit anti-serotonin serum prepared in the laboratory of the authors was used in this study. Serotonin fibers were revealed as PAP-positive dark-brown elements displaying dot-like varicosities (0.5–2.0 m in diameter). In the spinal cord of the dog, the distribution of serotonin fibers is extensive. These fibers occur more densely in more caudal segments and are most prominent at the sacrococcygeal level. From the level of the cervical spinal cord to the upper lumbar region, the descending serotonin fibers are located immediately under the pia mater in the ventrolateral portion of the lateral funiculus. In more caudal segments, serotonin fibers are dispersed throughout the ventral and lateral funiculi. These longitudinal en passage-fibers send numerous transverse collaterals to the gray matter. Serotonin fibers are distributed abundantly in the laminae I and III of the posterior column, while only a few fibers are found in the lamina II (substantia gelatinosa). In the intermediate zone, two descending serotonin pathways, i.e., lateral and medial longitudinal bundles, are observed to coincide topographically with the nucleus intermediolateralis at C8(T1)-L3(L4) and the nucleus intermediomedialis at C1-Co respectively. The former is particularly prominent and communicates with the contralateral bundle via commissural bundles at intervals of 300–500 m. The large motoneurons in the anterior column, especially those in the nucleus myorabdoticus lateralis within the cervical and lumbar enlargements, are closely surrounded by fine networks of serotonin fibers and terminals.Supported by a grant (No. 56440022) from the Ministry of Education, Science and Culture, Japan  相似文献   

10.
The distribution of substance P (SP)- and somatostatin (SOM)-immunoreactive elements in the spinal cord of the neonatal rat was examined. With few exceptions, the distribution of SP-immunoreactive elements is similar to that described for the adult. A major difference is the obvious presence of SP-immunoreactive fibers in all funiculi of neonatal cords. In addition, an obvious small bundle of longitudinal SP immunoreactive fibers is seen in the base of the dorsal horn at rostral cervical levels. Unlike that of the adult, the neonatal spinal cord shows a widespread distribution of SOM-immunoreactivity. SOM-immunoreactive fibers are present in all funiculi. SOM-immunoreactive perikarya of various shapes and sizes are widely dispersed throughout the gray matter. The cell density is increased in the superficial laminae of the dorsal horn, in a region ventral-lateral to the central canal and in the ventral horn. SOM-immunoreactive varicosities are present in moderate amounts in the superficial laminae of the dorsal horn but are extremely sparse in other regions of the gray matter. A few SOM-immunoreactive fibers course longitudinally at the base of the dorsal horn at rostral levels of the cord. These fibers are found in the same region occupied by the longitudinal SP-immunoreactive fibers referred to above.  相似文献   

11.
Rabbit spinal cords were subjected to 10 to 40 minutes of ischemia with and without 4 days of recirculation and L-4 segment was analyzed for adenylates and ATP-induced bioluminiscence. ATP level and energy charge was progressively reduced by increasing durations of ischemia. Regional evaluation of ATP-induced bioluminiscence after 10 and 20 minutes of ischemia revealed ATP depletion mainly in the gray matter of spinal cord. Forty minutes of ischemia resulted in complete reduction of ATP bioluminiscence in both gray and white matter. Within 4 days of recirculation following all periods of ischemia studied, only partial metabolic recovery occurred. Restitution of ATP-induced bioluminiscence was regionally heterogeneous, reduced predominantly in the anterior horns of gray matter.  相似文献   

12.
1.  Studies were performed to determine the changes in immunoreactive (IR) type II glucocorticoid receptors of the ventral horn of the spinal cord produced by adrenalectomy (ADX), dexamethasone (DEX) treatment, and spinal cord transection in rats.
2.  These treatments did not significantly affect the number of IR neurons of the ventral horn; however, staining intensity was enhanced after ADX and decreased following 4 days of DEX. A similar response pattern was observed for glial-type cells.
3.  In control rats, about half of the ventral horn motoneurons were surrounded by immunoreactive glial perineuroral cells. These perineuronal cells increased after ADX (77% of counted neurons) and decreased following DEX treatment (32%;P < 0.05).=">
4.  Two days after transection, staining was intensified in ventral horn motoneurons and glial cells located in the spinal cord below the lesion. Immunoreactive perineuronal cells increased to 85% of counted neurons, from a value of 66% in sham-operated rats (P < 0.05).=">
5.  These findings suggest considerable plasticity of the spinal cord GCR in response to changes in hormonal levels and experimental lesions. It is possible that factors involved in cell to cell communication with transfer of hypothetical regulatory molecules may play roles in GCR regulation and the increased immunoreaction of glia associated with neurons following transection and ADX.
  相似文献   

13.
Vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI) and neuropeptide Y (NPY) are neuropeptides present in all layers of the small intestine. NPY-immunoreactive fibres in the gut seem to derive from two sources. One population is of extramural (sympathetic) origin and contains noradrenaline, another is of intramural origin and does not contain noradrenaline. In the present study of mouse, rat and pig, immunocytochemistry showed immunoreactive PHI to coexist completely with immunoreactive VIP. This was predictable, since VIP and PHI derive from the same precursor. In addition, however, VIP and PHI were found to coexist with immunoreactive NPY in non-adrenergic (but not in adrenergic) nerve fibres and nerve cell bodies. This coexistence was unexpected, since the VIP precursor does not contain NPY-like sequences.  相似文献   

14.
The effects of acrobatic exercise and magnetic stimulation (MS) in mice applied either separately or in combination while on recovery after spinal cord injury have been investigated. This progress has been compared in six groups of animals. The first two groups consisted of non‐injured and injured animals, respectively, which were not exposed to any treatment. The third group included injured animals that participated in an acrobatic exercise and were exposed to MS applied at the frequency of 1 Hz. The animals in the fourth group were exposed to the MS (1 Hz) only, without performing any acrobatic exercises. While the mice in the fifth group participated in the acrobatic exercise and were exposed to MS at 15 Hz, the animals in group six received an acrobatic exercise without exposure to MS. The effects of the treatment were evaluated with the Basso Mouse Scale, the Horizontal Ladder Scale, and the Abnormal Posture Scale. While all groups showed improvement at the end of the study period, the animals that received exercise combined with 1 Hz MS demonstrated the best functional improvement. The animals exposed to the MS applied at a frequency of 15 Hz combined with acrobatic exercise, and those animals that were engaged in exercise and were not exposed to the MS, performed the worst. The area of the spared white matter at the lesion center correlated well with functional recovery and was greatest in the animals that received MS (1 Hz) combined with exercise. Bioelectromagnetics 32:49–57, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
26RFa is a novel RFamide peptide originally isolated in the amphibian brain. The 26RFa precursor has been subsequently characterized in various mammalian species but, until now, the anatomical distribution and the molecular forms of 26RFa produced in the CNS of mammals, in particular in human, are unknown. In the present study, we have investigated the localization and the biochemical characteristics of 26RFa-like immunoreactivity (LI) in two regions of the human CNS--the hypothalamus and the spinal cord. Immunohistochemical labeling using specific antibodies against human 26RFa and in situ hybridization histochemistry revealed that in the human hypothalamus 26RFa-expressing neurons are located in the paraventricular and ventromedial nuclei. In the spinal cord, 26RFa-expressing neurons were observed in the dorsal and lateral horns. Characterization of 26RFa-related peptides showed that two distinct molecular forms of 26RFa are present in the human hypothalamus and spinal cord, i.e. 26RFa and an N-terminally elongated form of 43 amino acids designated 43RFa. These data provide the first evidence that 26RFa and 43RFa are actually produced in the human CNS. The distribution of 26RF-LI suggests that 26RFa and/or 43RFa may modulate feeding, sexual behavior and transmission of nociceptive stimuli.  相似文献   

16.
Using indirect immunofluorescence technique, avian pancreatic polypeptide (APP) immunoreactive cell bodies and fibres have been observed in the superficial laminae of the dorsal horn of the spinal cord and of the spinal trigeminal nucleus. Fibres were also seen in the ventral horns, in low numbers at the cervical and thoracic levels and in high numbers at the lower lumbar and upper sacral levels. Neither total cord transection, nor dorsal rhizotomy, nor capsaicin treatment seemed to affect the APP systems described above. The present findings suggest that an APP-like peptide may be involved in processing of sensory information at the level of the first relay station.  相似文献   

17.
Summary Whole mouse embryos were grown in vitro from Theiler stage 12 (1 to 7 somites) to Theiler stages 15 and 16 (25 to 35 somites). This procedure gives experimental access to precisely staged embryos during the early period of neurogenesis. To follow the further development of neurons in vitro, fragments of spinal primordia were set up from these cultured embryos. In such cultures, the proliferation of precursor cells, the formation of postmitotic cells and, finally, the cytodifferentiation of neurons were observed. A preliminary account of this work was given at the Tissue Culture Association Meeting in 1977, and the Canadian Federation of Biological Societies Meeting in 1977 (1,2). This work was supported by Grant MT 4235 from the Medical Research Council of Canada.  相似文献   

18.
Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. This study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Bladders from SCI (T8/9 transection) and sham-operated rats 5 weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. In conclusion, IC populations in bladder wall were decreased 5 weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.  相似文献   

19.
Summary Synaptic profiles have been identified in the outgrowth from chick embryo spinal cord maintained in vitro for short periods. Profiles corresponding to types that may be excitatory and inhibitory in the intact central nervous system have been found. Their presence outside expiants, and in occasional relation to glial cells, suggests that neurites themselves may possess a generalised capacity for synapse formation under appropriate circumstances, rather than be limited to specific targets.  相似文献   

20.
The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in multiple cellular functions, such as cell metabolism, proliferation and survival. Many previous studies have shown that mTOR regulates both neuroprotective and neuroregenerative functions in trauma and various diseases in the central nervous system (CNS). Recently, we reported that inhibition of mTOR using rapamycin reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin at four hours after injury significantly increases the activity of autophagy and reduces neuronal loss and cell death in the injured spinal cord. Furthermore, rapamycin-treated mice show significantly better locomotor function in the hindlimbs following SCI than vehicle-treated mice. These findings indicate that the inhibition of mTOR signaling using rapamycin during the acute phase of SCI produces neuroprotective effects and reduces secondary damage at lesion sites. However, the role of mTOR signaling in injured spinal cords has not yet been fully elucidated. Various functions are regulated by mTOR signaling in the CNS, and multiple pathophysiological processes occur following SCI. Here, we discuss several unresolved issues and review the evidence from related articles regarding the role and mechanisms of the mTOR signaling pathway in neuroprotection and neuroregeneration after SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号