首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of isotopic Na+ flows was studied in urinary bladders of toads from the Dominican Republic. Initial studies of the potential dependence of passive serosal to mucosal 22Na+ efflux demonstrated the absence of isotope interaction and/or other coupling with passive Na+ flow. The electrical current I and mucosal to serosal 22Na+ influx were then measured with transmembrane potential clamped at Δψ = 0, 25, 50, 75 or 100 mV. Subsequent elimination of active Na+ transport mucosal amiloride permitted calculation of the rates of active Na+ transport JNaa and active and passive influx JNaNa and JNaa and JNap. The results indicate that for Dominican toad bladders mounted in chambers only Na+ contributes significantly to transepithelial active ion transport; hence JNaa = Ja. Ja was abolished at Δψ = E = 96.3 ± 1.9 (S.E.) mV. As Δψ approached E, active efflux Ja became demonstrable. At Δ = 100 mV, Ja exceeded Ja, so that Ja was negative. Experimental values of Ja agreed well with theoretical values predicted by a thermodynamic formulation: Jexpa = 0.985 Jtheora (r = 0.993). The dependence of Ja on Δψ is curvilinear.  相似文献   

2.
Glucose (20 mM) released insulin from pancreatic islets of C57BL6J-db2Jdb2J mice, the response being potentiated by 1 mM 3-isobutyl-1-methylxanthine. Islets of C57BLKsJ-dbdb mice failed to respond to glucose and released only little insulin when challenged with both glucose and methylxanthine. After incubation with 0 or 20 mM glucose alone the islet content of adenosine 3′:5′-cyclic monophosphate did not differ between the two types of mice or between glucose concentrations. 3-Isobutyl-1-methylxanthine increased the islet adenosine 3′:5′-cyclic monophosphate markedly in 6J-db2Jdb2J mice but not significantly in KsJ-dbdb mice.  相似文献   

3.
The binding of [3H]kanamycin to E. coli ribosomes and ribosomal subunits was studied by equilibrium dialysis and Millipore filter methods. The 70S ribosome bound ca. two molecules up to the antibiotic concentration of 10 uM, and more at higher concentrations. Each ribosomal subunit was observed to possess one major binding site, and the affinity of the small ribosomal subunit was greater than that of the large subunit. The binding of [3H]kanamycin to ribosomes and ribosomal subunits was reversed by neomycin or gentamicin, but not by streptomycin and chloramphenicol. Kanamycin, neomycin and gentamicin interfered with the binding of [14C] tuberactinomycin O. Translocation of N-Ac-Phe-tRNA was markedly inhibited by kanamycin, neomycin or gentamicin, but not by streptomycin.  相似文献   

4.
A potent inhibitor of (Na+ + K+)-ATPase activity was purified from Sigma equine muscle ATP by cation- and anion-exchange chromatography. The isolated inhibitor was identified by atomic absorption spectroscopy and proton resonance spectroscopy to be an inorganic vanadate. The isolated vanadate and a solution of V2O5 inhibit sarcolemma (Na+ + K+)-ATPase with an I50 of 1 μM in the presence of 1 mM ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid (EGTA), 145 mM NaCl, 6mM MgCl2, 15 mM KCl and 2 mM synthetic ATP. The potency of the isolated vanadate in increased by free Mg2+. The inhibition is half maximally reversed by 250 μM epinephrine. Equine muscle ATP was also found to contain a second (Na+ + K+)-ATPase inhibitor which depends on the sulfhydryl-reducing agent dithioerythritol for inhibition. This unknown inhibitor does not depend on free Mg2+ and is half maximally reversed by 2 μM epinephrine. Prolonged storage or freeze-thawing of enzyme preparations decreases the susceptibility of the (Na+ + K+)-ATPase to this inhibitor. The adrenergic blocking agents, propranolol and phentolamine, do not block the catecholamine reactivation. The inhibitors in equine muscle ATP also inhibit highly purified (Na+ + K+)-ATPase from shark rectal gland and eel electroplax. The inhibitors in equine muscle ATP have no effect on the other sarcolemmal ATPases, Mg2+-ATPase, Ca2+-ATPase and (Ca2+ + Mg2+)-ATPase.  相似文献   

5.
(1) A quantitative study has been made of the binding of ouabain to the (Na+ + K+)-ATPase in homogenates prepared from brain tissue of the hawk moth, Manduca sexta. The results have been compared to those obtained in bovine brain microsomes. (2) The insect brain (Na+ + K+)-ATPase will bind ouabain either in the presence of Mg2+ and Pi, (‘Mg2+, Pi’ conditions) or in the presence of Na+, Mg2+, and an adenine nucleotide (‘nucleotide’ conditions) as is the case for the bovine brain (Na+ + K+)-ATPase. The binding conditions did not alter the total number of receptor sites measured at high ouabain concentrations in either tissue. (3) Potassium ion decreases the affinity (increases the KD) of ouabain to the M. sexta brain (Na+ + K+)-ATPase under both binding conditions. However, ouabain binding is more sensitive to K+ inhibition under the nucleotide conditions. In bovine brain ouabain binding is equally sensitive to K+ inhibition under the both conditions. (4) The enzyme-ouabain complex has a rate of dissociation that is 10-fold faster in the M. sexta preparation than in the bovine brain preparation. Because of this, the M. sexta (Na+ + K+)-ATPase has a higher KD for ouabain binding and is less sensitive to inhibition by ouabain than the bovine brain enzyme. (5) This data supports the hypothesis that two different conformational states of the M. sexta (Na+ + K+)-ATPase can bind ouabain.  相似文献   

6.
7.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10?8 M and was half-maximal at 7.9±3.4·10?7M. The increase at 1·10?5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10?9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10?5 M dopamine was 2.3±0.9·10?6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10?7M and 4.7±1.6·10?7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10?6Mcis-flupenthixol, 2.7±0.4·10?5Mtrans-flupenthixol, >1·10?5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

8.
The binding of the crustacean selective protein neurotoxin, toxin B-IV, from the nemertine Cerebratulus lacteus to lobster axonal vesicles has been studied. A highly radioactive, pharmacologically active derivative of toxin B-IV has been prepared by reaction with Bolton-Hunter reagent. Saturation binding and competition of 125I-labeled toxin B-IV by native toxin B-IV have shown specific binding of 125I-labeled toxin B-IV to a single class of binding sites with a dissociation constant of 5–20 nM and a binding site capacity, corrected for vesicle sidedness, of 6–9 pmol per mg membrane protein. This compares to a value of 3.8 pmol [3H]saxitoxin bound per mg in the same tissue. Analysis of the kinetics of toxin B-IV association (k+1=7.3·105M?1·s?1) and dissociation (k? 1=2·10?3s?1) shows a nearly identical Kd of about 3 nM. There is no competition of toxin B-IV binding by purified toxin from Leiurus quinquestriatus venom while Centruroides sculpturatus Ewing toxin I appears to cause a small enhancement of toxin B-IV binding.  相似文献   

9.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

10.
11.
12.
Na+, K+ and Cl? concentrations (cji) and activities (aji), and mucosal membrane potentials (Em) were measured in epithelial cells of isolated bullfrog (Rana catesbeiana) small intestine. Segments of intestine were stripped of their external muscle layers, and bathed (at 25°C and pH 7.2) in oxygenated Ringer solutions containing 105 mM Na+ and Cl? and 5.4 mM K+. Na+ and K+ concentrations were determined by atomic absorption spectrometry and Cl? concentrations by conductometric titration following extraction of the dried tissue with 0.1 M HNO3. 14C-labelled inulin was used to determine extracellular volume. Em was measured with conventional open tip microelectrodes, aCli with solid-state Cl?-selective silver microelectrodes and aNai and aKi with Na+- and K+-selective liquid ion-exchanger microelectrodes. The average Em recorded was ?34 mV. cNai, cKi and cCli were 51, 105 and 52 mM. The corresponding values for aNai, aKi and aCli were 18, 80 and 33 mM. These results suggest that a large fraction of the cytoplasmic Na+ is ‘bound’ or sequestered in an osmotically inactive form, that all, or virtually all the cytoplasmic K+ behaves as if in free solution, and that there is probably some binding of cytoplasmic Cl?. aCli significantly exceeds the level corresponding to electrochemical equilibrium across the mucosal and baso-lateral cell membranes. Earlier studies showed that coupled mucosal entry of Na+ and Cl? is implicated in intracellular Cl? accumulation in this tissue. This study permitted estimation of the steady-state transapical Na+ and Cl? electrochemical potential differences (Δμ̄Na and Δμ̄Cl). Δμ̄Na (?7000 J · mol?1; cell minus mucosal medium) was energetically more than sufficient to account for Δμ̄Cl (1000–2000 J · mol?1).  相似文献   

13.
The action of ATP and its analogs as well as the effects of alkali ions were studied in their action on the ouabain receptor. One single ouabain receptor with a dissociation constant (KD) of 13 nM was found in the presence of (Mg2+ + Pi) and (Na+ + Mg2+ + ATP). pH changes below pH 7.4 did not affect the ouabain receptor. Ouabain binding required Mg2+, where a curved line in the Scatchard plot appeared. The affinity of the receptor for ouabain was decreased by K+ and its congeners, by Na+ in the presence of (Mg2+ + Pi), and by ATP analogs (ADP-C-P, ATP-OCH3). Ca2+ antagonized the action of K+ on ouabain binding. It was concluded that the ouabain receptor exists in a low affinity (Rα) and a high affinity conformational state (Rβ). The equilibrium between both states is influenced by ligands of (Na+ + K+)-ATPase. With 3 mM Mg2+ a mixture between both conformational states is assumed to exist (curved line in the Scatchard plot).  相似文献   

14.
In bacterial extracts streptomycin is known not only to inhibit ribosomal activity but also to cause gradual release of ribosomes from polysomes. Nevertheless, we now find that after streptomycin has virtually halted protein synthesis in cells of Escherichia coli K12 a substantial (though reduced) level of polysomes persists. These polysomes are evidently maintained by turnover rather than by static blockade, for in streptomycin-treated cells [3H]uracil pulses are rapidly incorporated in the polysomal messenger RNA; moreover, if the synthesis of RNA or the formylation of methionyl-transfer RNA is blocked the polysome level decreases rapidly. Streptomycin thus appears to cause a cycle of ribosomal initiation, blockage of chain extension, gradual release, and reinitiation.The resulting cyclic blockade of initiation sites can account for the dominance of streptomycin sensitivity over resistance in strsstrr2 heterozygotes. In confirmation of this model, the inactive resistant ribosomes in treated heterozygotes were found to resume activity if the cells were lysed and excess messenger was provided. These findings further suggest that in sensitive cells damage to only a fraction of the ribosomal population by streptomycin may be sufficient to block protein synthesis.  相似文献   

15.
Studies have shown that there is an abnormality in the thymus of dystrophic mice with respect to age-dependent thymus weight changes and altered morphology (T. DeKretser and B. Livett, Nature (London), 263, 682, 1976). Recently, others have shown that natural killer (NK) cells can lyse cells of a large, immature, rapidly dividing cell subpopulation within the thymus of normal young (3 weeks of age) mice (M. Hansson, K. Karre, R. Kiessling, J. Roder, B. Anderson, and P. Hayry, J. Immunol., 123, 765, 1979). The NK susceptibility of dystrophic mouse thymocytes as targets was therefore studied. Spleen cells from normal (+/+) and dystrophic (dy2Jdy2J) male C57BL/6J mice 8–10 weeks old were passed over nylon wool and the nonadherent cells were incubated with 51Cr-labeled YAC-1 lymphoma target cells or thymocytes in a 51Cr-release assay. Spleen cells from dystrophic mice killed twofold more YAC-1 target cells than did spleen cells from normal mice. Thymocytes from 3- to 4-week-old dystrophic mice were three to four times more susceptible to NK lysis by dystrophic mouse spleen cells as compared with normal mouse spleen cells. Spleen cells from dystrophic mice had the same NK activity against dystrophic and normal mouse thymocytes as targets. Normal mouse spleen cells killed three- to fourfold more dystrophic mouse thymocytes than that of normal mouse thymocytes as targets. Target cellbinding studies revealed that conjugate-forming cells from nylon nonadherent dystrophic mouse spleen cells were found to be two- to fourfold greater than for normal mouse spleen cells using YAC-1 tumor cells as targets. The number of lymphocytes bound per YAC-1 target cell ranged from 2 to 5 for dystrophic mouse spleen cells as compared with 1 to 2 for the normal control group. Using both normal and dystrophic mouse thymocytes as targets, the conjugate-forming cells from dystrophic mouse spleen cells were also found to be twofold greater than in the normal control group. Cold target inhibition studies revealed that the natural killing of dystrophic mouse thymocytes was due to a YAC-1-reactive NK cell. Effector cell depletion studies using monoclonal anti-Thy-1.2 plus complement treatment and plastic petri dish adherence also revealed that the natural killing of dystrophic mouse thymocytes was not due to either T lymphocytes or macrophages. Taken together, these results show an increase in NK-sensitive thymocyte targets in dystrophic mice, in combination with an increase in splenic NK activity.  相似文献   

16.
Author index     
The ionic influence and ouabain sensitivity of lymphocyte Mg2+-ATPase and Mg2+-(Na+ + K+)-activated ATPase were studied in intact cells, microsomal fraction and isolated plasma membranes. The active site of 5′-nucleotidase and Mg2+-ATPase seemed to be localized on the external side of the plasma membrane whereas the ATP binding site of (Na+ + K+)-ATPase was located inside the membrane.Concanavalin A induced an early stimulation of Mg2+-ATPase and (Na+ + K+)-ATPase both on intact cells and purified plasma membranes. In contrast, 5′-nucleotidase activity was not affected by the mitogen. Although the thymocyte Mg2+-ATPase activity was 3–5 times lower than in spleen lymphocytes, it was much more stimulated in the former cells (about 40 versus 20 %). (Na+ + K+)-ATPase activity was undetectable in thymocytes. However, in spleen lymphocytes (Na+ + K+)-ATPase activity can be detected and was 30 % increased by concanavalin A. Several aspects of this enzymic stimulation had also characteristic features of blast transformation induced by concanavalin A, suggesting a possible role of these enzymes, especially Mg2+-ATPase, in lymphocyte stimulation.  相似文献   

17.
(1) The total phospholipid content of a gradient purified (K+ + H+)-ATPase preparation from pig gastric mucosa is 105 μmol per 100 mg protein, and consists of 29% sphingomyelin, 29% phosphatidylcholine, 28% phosphatidylethanolamine, 10% phosphatidylserine and 4% phosphatidylinositol. The cholesterol content corresponds to 50 μmol per 100 mg protein. (2) Treatment with phospholipase C (from Clostridium welchii and Bacillus cereus) results in an immediate decrease of the phosphate content. Up to 50% of the phospholipids are hydrolyzed by each phospholipase C preparation alone, without further hydrolysis by increased phospholipase concentration or prolonged incubation time. Combined treatment with the two phospholipase C preparations, sequentially or simultaneously, hydrolyzes up to 65% of the phospholipids. (3) The (K+ + H+)-ATPase and K+ stimulated p-nitrophenylphosphatase activities are decreased proportionally with the total phospholipid content, indicating that these enzyme activities are dependent on phospholipids. (4) Phospholipase C treatment does not change optimal pH, Km value for ATP and temperature dependence of the gastric (K+ + H+)-ATPase, but slightly decreases the Ka value for K+. (5) Phospholipase C treatment lowers the AdoPP[NH]P binding and phosphorylation capacities, suggesting that inactivation occurs primarily on the substrate binding level. (6) Most of the results can be understood by assuming that hydrolysis of the phospholipids by phospholipase C leads to aggregation of the membrane protein molecules and complete inactivation of the aggregated ATPase molecules.  相似文献   

18.
The interaction of lanthanides and other cations with phosphatidylcholine bilayers present as single bilayer vesicles in 2H2O has been investigated in terms of stoichiometry, apparent binding constants and environmental conditions.Lanthanides are shown to form 2 : 1 (molar ratio) phosphatidylcholine to metal ion complexes.The apparent binding constant Kb varies as a function of the quantity of metal ion bound and as a function of the Cl? concentration. The apparent binding constant at “zero loading” is K0 = 1.25 · 104L2 · M?at 0.15 M KCl. It decreases exponentially with increased “loading” expressed as the molar ratio of metal ion bound to effective phosphatidylcholine concentration and increases exponential with Cl? concentration.The interaction of lanthanides and divalent cations such as Ca2+ and Mg2+ is independent of pH in the pH range 3–7+ and 3–10 respectively, but is sensitive to the nature of the anion. The presence of anions enhances the interaction with polyvalent cations, the chaotropic anions showing the largest effect. The order of enhancement is Cl? < Br? < NO3? < SCN? < I? < ClO4?. The nature of the monovalent counterion (cation) has little effect on the enhanced binding of lanthanides in the presence of the above anions.The affinity of other polyvalent cations for phosphatidylcholine bilayers has been determined by competition with lanthanides. The physiologically important divalent cations Ca2+ and Mg2+ both bind less strongly (by about an order of magnitude) to the lipid surface. The order of binding of cations reflects direct binding to the phosphodiester group, with UO22+ showing the highest affinity.  相似文献   

19.
Activity levels of sulfotransferases, requisite for the sulfation of chondroitin sulfate proteoglycan, were measured in cell-free homogenates prepared from neonatal epiphyseal cartilage of normal C57B1/6J or homozygous brachymorphic mice. In the presence of [35S]-PAPS only or [35S]-PAPS plus an exogenous sulfate acceptor, comparable amounts of 35SO42? were incorporated into chondroitin sulfate by the normal and mutant types of cartilage. In contrast, the mutant cartilage catalyzed the conversion of only 30% of the 35SO42? into chondroitin sulfate as compared to normal mouse cartilage when synthesis was initiated from ATP and H235SO4. These results suggest that the production of an undersulfated proteoglycan which has previously been reported in brachymorphic mice (Orkin, R.W. etal. (1976) Devel. Biol. 50, 82–94) may result from a defect in the synthesis of the sulfate donor PAPS.  相似文献   

20.
Harmaline, a known inhibitor of the (Na+ + K+)-ATPase in cell membranes, inhibited 50% of the 22Na efflux from barnacle muscle fibres at an extracellular concentration of 2.4 mM. Injected harmaline inhibited 50% of the efflux at an estimated intracellular concentration of about 8 mM · kg?1, assuming complete equilibration with no binding. Total fibre harmaline was measured in separate fibres by ultraviolet spectrophotometry. Fibres in 3 mM harmaline saline accumulated harmaline with a half-time of 17 min and a final total fibre concentration of 6–12 mM · kg?1. In harmaline-free saline this accumulated harmaline was lost exponentially with a half-time of 35 min; injected harmaline was lost exponentially from fibres with a half-time of 50 min. It is proposed that harmaline crosses the fibre membrane as the uncharged base and that its apparent accumulation against a concentration gradient is mainly due to intracellular binding with an additional contribution from a transmembrane pH gradient. It is concluded that, in fibres exposed to harmaline saline, the intracellular concentration can reach a sufficiently high value, as judged from the results of the injection experiments, to inhibit Na+ efflux at an interior-facing site on the fibre membrane. In contrast, harmaline appears to inhibit the Na+-dependent uptake of l-glutamate at an extracellular site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号