首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure was developed for the cultivation of cells derived from the cerebral hemispheres of the 21-day old rat. Approximately 98 percent of the cells in a 10 day culture are astrocytes that contain glial fibrillary acidic protein. Analysis of the extracted gangliosides by thin layer chromatography revealed that ganglioside GM1 was absent and that the predominant ganglioside was GM3. Very small amounts of the polysialogangliosides GD1a, GD1b, and GT1b were detected. The concentration of gangliosidic NeuNAc per mg protein in these astrocytes was only 3 percent that observed in the 5 day culture of a mixed cell preparation from newborn rat brain. Immunohistochemical and histochemical studies were performed on the mixed cell population of the minced tissue of 21-day old rat brain prior to cultivation. Astrocytes did not stain for hyaluronectin. These cells also did not provide a positive staining reaction for ganglioside GM1 utilizing the antiganglioside GM1 peroxidase-antiperoxidase procedure and the biotinylated choleragen-avidin-peroxidase procedure. These two histochemical methods for ganglioside GM1 also did not stain astrocytes that had been cultured for 5 days. Oligodendroglial cells, which were also present in the uncultured 21-day-old minced brain tissue, stained positively for ganglioside GM1 and hyaluronectin. Hyaluronectin had previously been shown to be a marker for oligodendroglia. Oligodendroglial cells which were present in the 5 day cultures of 21-day old brain tissue also provided a positive reaction for ganglioside GM1. It is concluded that ganglioside GM1 is absent in astroglia. The presence of small amounts of polysialogangliosides in the "pure" astrocyte preparation is discussed.  相似文献   

2.
Unlike neurons from avian retina and other regions of avian and mammalian brain, neurons from mammalian retina not only contain gangliosides of the gangliotetraosyl ceramide series but also maintain a prevalence of GD3, a ganglioside of the lactosylceramide series characteristic of proliferative neural cells, when they are fully differentiated. We show here that GD3 is prevalent at all developmental periods of the rat retina from birth [50% of total gangliosidic N-acetylneuraminic acid (NeuNAc)] to adult (30% of total gangliosidic NeuNAc). GD3-synthase specific activity increased about 1.5-fold from birth to day 7 and essentially plateaued thereafter. The GD3-/GM2-synthase specific activity ratio was compared in rat and chicken retina at early and late developmental stages. In chicken retina the ratio was about 0.7 at early (when GD3 is prevalent) and decreased to 0.07 at late (when GD1a is prevalent) developmental stages. In rat retina the ratio was about 13 and 6 at, respectively, early and late developmental stages. These findings suggest that the prevalence of GD3 and of other "b" pathway gangliosides in adult rat retina neurons could be due in part to the maintenance of a high GD3-/GM2-synthase activity ratio throughout development of the tissue.  相似文献   

3.
Intermolecular effects in the polymerization of hemoglobin S   总被引:4,自引:0,他引:4  
Monolayer cultures of astrocytes from newborn rat brain hemispheres have been analysed for the glial-specific protein S-100, during their growth cycle. In primary cultures S-100 protein level increases with a pattern close to that observed with rat brain hemispheres in vivo. This finding suggests that some biochemical maturation of the astrocytes occurs in vitro. In secondary cultures the level of S-100 protein decreases and then increases at the end of the proliferation phase. This modulation, similar to that observed in a clonal culture of tumor cells from rat brain (C6) provides a model to study the relationship between gene expression and the phase of growth of the cells and will allow parallel investigations in normal and tumor cells.  相似文献   

4.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

5.
Short-term and long-term (greater than 7 months) cultured astrocytes from 14-day-old rat brain were analyzed for ganglioside content. Analysis of the extracted gangliosides by HPTLC revealed that ganglioside GM1 was absent in 35 days and 235 days cultured astrocytes, and that the predominant ganglioside was GM3, showing a double band in both cases. A small amount of the disialogangliosides (GD3, GD1a) was also detected. More than 70% of radioactivities into ganglioside fractions by cultured astrocytes, in the presence of N-[3H]-acetylmannosamine, appeared in ganglioside GM3. The upper band component of GM3 increased 60% in long-term astrocyte cultures compared to 35-day-old cultures. Also, an increased GD3 content in long-term astrocyte cultures was detected. These results suggest that the increase of GD3 and upper band GM3 in long-term cultured astrocytes might be related to the appearance of small processes showing strong reactivity against GFAP and vimentin during astrocyte-subculture.  相似文献   

6.
The ganglioside concentration and composition in growth cone-deficient nerve cells, induced by inclusion of cytochalasin B (CB) are compared with those of 2-day-old control cells from primary cultures of embryonic rat cerebral cortex. Ganglioside GM1 and GD1a are the major gangliosides in the growth cone. Ganglioside GM1 may be one of the membrane components of growth cones that function in neural recognition during development.  相似文献   

7.
The non-covalent interactions of benzo[a]pyrene (BP) and several of its hydroxylated metabolites with ligandin, aminoazodye-binding protein A (Z-protein, fatty acid binding protein) and lecithin bilayers have been studied by equilibrium dialysis, an adsorption technique and fluorescence spectroscopy. Binding affinities expressed as v/c (where v = moles of BP or BP metabolite bound per mole of protein or lipid and c = unbound concentration), were measured at concentrations sufficiently low that there was no self-association of the unbound compounds as judged by their fluorescence characteristics. 3-Hydroxybenzo[a]pyrene (BP-3-phenol), 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene (BP-4,5-dihydrodiol) and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene (BP-7,8-dihydrodiol) bind more strongly (v/c = 105?5 · 105l · mol?1) to all three binders than does BP itself (v/c = 104?7 · 104l · mol?1). 9,10-Dihydro-9,10-dihydroxybenzo[a]pyrene (BP-9,10-dihydrodiol) binds to ligandin with an affinity similar to those of the other BP metabolites studied here, but binds much less strongly to both protein A and lecithin (v/c = 104 and 3 · 104 l · mol?1, respectively). The low affinity of BP-9,10-dihydrodiol for lecithin would account for earlier findings that on incubation of BP with isolated rat hepatocytes, this metabolite egressed from the cells to the extracellular medium much more readily than either BP-4,5-dihydrodiol or BP-7,8-dihydrodiol.Calculations based on these results suggest that within hepatocytes BP and its metabolites, including BP-9,10-dihydrodiol, will be found almost exclusively associated (>98%) with lipid membranes.  相似文献   

8.
The interaction between the (Na+ + K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5′-AMP, cyclic GMP or 5′-GMP, could inhibit the (Na+ + K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ + K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854–3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ + K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ + K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ + K+)-ATPase, resulted in a decrease in overall (Na+ + K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ + K+)-ATPase has no effect on (Na+ + K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ + K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ + K+)-ATPase was unaffected.  相似文献   

9.
Nitrogenase activity in agar cultures of cowpea rhizobia, strain 32H1, was rapidly inhibited by NH4+ but this was relieved by increased O2 tension. Inhibition was more rapid than that caused by inhibitors of protein synthesis and was not relieved by methionine sulfoximine or methionine sulfone. Under conditions were nitrogenase activity was inhibited by NH4+, glutamine synthetase and glutamate synthase were substantially unaffected. Glutamate dehydrogenase was undetected in either nitrogenase active or NH4+ inhibited cultures. These results indicate that NH4+ inhibition of nitrogenase activity in strain 32H1 is not effected through glutamine synthetase regulation of nitrogenase synthesis.  相似文献   

10.
An ultradian oscillation of protein synthesis was detected by synchronization of metabolic activity in rat hepatocyte cultures. This oscillation occurs in dense cultures in fresh medium, but not in sparse ones. Metabolic synchronization of sparse cultures, however, was initiated by conditioned medium or addition of 0.3-0.5 microm of a mixture of bovine brain gangliosides to fresh culture medium along with either 0.06-0.2 microm GM1 or 0.1-0.2 microm GDIa. GTIb and GDIb did not produce oscillations, nor did human liver ganglioside GM3. High expression of GM1 ganglioside determinants in hepatocytes maintained in the conditioned medium purified polyclonal antibodies to GM1 was coupled with protein synthetic oscillatory activity, i.e. metabolic synchronization. Incubation of dense cultures with GM1-antibodies for 24 h decreased the amplitude of these oscillations. In sparse cultures maintained in fresh medium where protein synthesis showed no oscillatory pattern, GM1 expression was low.  相似文献   

11.
In early primary cultures from newborn rat brain, few glial fibrillary acidic protein (GFAP)-positive glial cells expressed intracytoplasmic immunoreactivity for fibronectin. After the second week in culture, however, fibronectin was expressed by a distinct population of GFAP-positive flat astrocytes, irrespective of which brain region was studied. In cerebellar cultures, these cells were more abundant than in cortical or neostriatal cultures and often formed a major population of the GFAP-positive cells. The difference in fibronectin expression between cerebellum and the other areas studied was statistically significant. When cultures were started from 9-day-old postnatal rat brain, fibronectin-positive astrocytes appeared earlier than in those from newborn animals, in all areas studied. Further, especially in the case of cerebellum, the number of fibronectin-positive astrocytes increased as a function of time in culture. In cultures started from whole brains of 12-day-old rat embryos, fibronectin was expressed within 24 h in culture by all the cells with morphology of flat astrocytes, positive for vimentin but negative for GFAP. These results indicate that astrocytes cultured from newborn and early postnatal rat brain are a heterogeneous population of cells: depending on the brain region studied and also depending on the age of brain tissue or the time in culture, less than 1-60% of the GFAP-positive flat astrocytes expressed fibronectin. This, together with the fact that fibronectin was present in early embryonic brain cells in culture, suggests that fibronectin may be a prerequisite for the development or interactions of brain cells.  相似文献   

12.
Localization of ganglioside GM1 in cholinergic neurons from the septal area of a primary culture newborn rat brain was studied with a double avidin-biotin complex system. Cholinergic neurons were identified by double immunolabeling techniques that use choline acetyltransferase (ChAT) and neurofilament (NF) protein-antibodies. ChAT-positive neurons also were stained for ganglioside GM1 by using an avidin-biotin complex technique.  相似文献   

13.
Ganglioside GM2, 3H-labeled in the sphingoid base, was added to the culture medium of normal and GM2 gangliosidosis fibroblasts. Ganglioside was found to adsorb rapidly to the cell surface, most of it could however be removed by trypsination. The trypsin-resistant incorporation was about 10 nmol/mg cell protein, after 48 h. The rates of adsorption and incorporation depended strongly on the concentration of fetal calf serum in the medium, higher serum concentrations being inhibitory. After various incubation times, the lipids were extracted, separated by thin-layer chromatography and visualized by fluorography. In normal cells a variety of degradation products as well as sphingomyelin was found whereas in GM2 gangliosidosis cells, only trace amounts of such products (mainly GA2) were found. In contrast, the higher gangliosides GM1 and GD1a were formed in comparable amounts (2.2-3.6% of total radioactivity after 92 h) in normal and pathologic cell lines. Supplementation of cells from GM2 gangliosidosis, variant AB, with purified GM2-activator protein restored ganglioside GM2 degradation to almost normal rates but had no effect on its glycosylation to gangliosides GM1 and GD1a. From these results we conclude that the synthesis of higher gangliosides from incorporated GM2 can occur by direct glycosylation and not only via lysosomal degradation and resynthesis from [3H]sphinganine-containing degradation products. Preliminary studies with subcellular fractionation after various times of [3H]ganglioside incorporation indicated biphasic kinetics for the net transport of membrane-inserted ganglioside to lysosomes, compatible with the notion that a portion of the glycolipids can also escape from secondary lysosomes and migrate to Golgi compartment or cell surface.  相似文献   

14.
Rainbow trout were treated with β-naphthoflavone and the hepatic microsomal cytochrome P-450 solubilized with 3-[(3-cholaminopropyl)dimethylammonio]-1-propanesulfonate. Chromatography on tryptamine-Sepharose 4B gave a single cytochrome P-450 peak which was further resolved into three components by elution from DEAE-Sepharose. The two main peaks were then chromatographed on hydroxyapatite and a total of four fractions obtained. Two of these fractions had similar properties and significantly metabolized [14C]benzo[a]pyrene in a reconstituted system containing rat cytochrome P-450 reductase. This activity was inhibited by α-naphthoflavone but not by metyrapone or SKF-525A. Purified cytochromes P-448 from 3-methylcholanthrene-treated rat had similar spectral properties and activity towards [14C]benzo[a]pyrene suggesting similarities between these forms.  相似文献   

15.
Activities of Five Different Sialyltransferases in Fish and Rat Brains   总被引:2,自引:0,他引:2  
Abstract: To investigate the role of Sialyltransferases in the metabolism of brain gangliosides, we examined activities of five different Sialyltransferases (GM3-, GD3-, GT3-, GD1a-, and GT1a-synthase) using total membrane preparations from cichlid fish and Sprague-Dawley rat brains, and analyzed the relationship between the enzyme activities and the ganglloside compositions. The patterns of sialyltransferase activities in fish and rat brains differed from each other. In fish brain, the GM3-synthase activity was lower than GD3-synthase activity, whereas the opposite relationship was observed in rat brain. The GT3-synthase reaction with fish brain membranes produced radiolabeled GM3, GD3, and a ganglioside that was identified as GT3 based on mobility on TLC using two different solvent systems. No GT3-synthase activity was detected in rat brain. The GD1a-and GT1a-synthase activities in fish brain were higher than those in rat brain. Although GT1a was a single radiolabeled ganglioside in fish GT1a-synthase reaction, this ganglioside could not be detected in rat brain. The ratios of GM3-, GD3-, GT3-, GD1a-, and GT1a-synthase activities in fish and rat brain were 23:31:4:28:14 and 61:21:0:18:0, respectively. Ganglioside analysis showed that fish brain was enriched with c-series gangliosides including GT3 and polysialo-species, whereas a-and b-se-ries gangliosides were major components in rat brain. These results suggest that the species-specific expression of gangliosides in brain tissues may be regulated, at least in part, at the level of sialyltransferase activities.  相似文献   

16.
Previous studies with microcultures of astroglial (AG) cells from newborn rat cerebrum had shown an ability of gangliosides to interact with AG cells cultured under defined conditions. We have now investigated the capability of gangliosides to stimulate DNA synthesis and cell number increases in similar secondary microcultures of newborn rat cerebrum AG cells. At a concentration of 6 X 10(-5)M, GM1 ganglioside stimulated DNA synthesis and increased cell numbers, with DNA synthesis leading cell increases by 12-24 hr. The ganglioside-induced AG cell proliferative response occurred with GD1a, GD1b and GT1b, GT1b being the most potent at 10(-5)M--while asialo GM1 and sialic acid were without effect. In the standard test cultures, DNA synthesis declined very steeply after the first day, with cell numbers stabilizing at the level reached after 2 days. Ganglioside was not itself responsible for the restricted proliferative response, as serum produced the same behaviors.  相似文献   

17.
A microsomal fraction from canine brain gray matter has been extracted with the detergent sodium dodecyl sulfate to partially purify the membrane bound Na+ + K+)-stimulated adenosine triphosphatase. Phospholipid, glycolipid, and a family of other glycoproteins are also enriched by the procedure; it is proposed that the product is an intrinsic membrane protein fraction. 6–8-fold purification of (Na+ + K+)-ATPase is obtained without solubilizing the enzyme and without irreversibly altering its turnover number. Final specific activities are 350–400 μmol of ATP hydrolyzed/h per mg protein. The stimulation and reversible inactivation of the (Na+ + K+)-ATPase by dodecyl sulfate were examined for information relevant to the mechanism of action of the detergent.  相似文献   

18.
Ganglioside GM1 and mixed brain gangliosides were mixed with 1-stearoyl-2-oleoyl lecithin (SOPC) and examined by differential scanning calorimetry as a function of ganglioside content and temperature. Low mole fractions of ganglioside GM1 and of mixed brain gangliosides are shown to be miscible with SOPC in the gel phase up to X = 0.3, with the possible exception of a small region of immiscibility for the mixed brain gangliosides system centered around X = 0.05. Above X = 0.3, the low-temperature phases demix into a (gel) phase of composition X = 0.3 and a (micellar) phase of composition X = 1.0. Above the endothermic phase transition temperature, no phase boundaries are discerned. It is pointed out that phase structures need to be determined in each domain delineated in the phase diagrams, and that cylindrical phases may exist at higher temperatures and intermediate compositions. The effects of addition of wheat germ agglutinin, which binds to ganglioside GM1, on a ganglioside GM1-SOPC mixture (X = 0.5), are described and interpreted in terms of partial demixing of ganglioside and lecithin. Behavior of the ganglioside-SOPC system is discussed with respect to the kinetics of cholera toxin action in lymphocytes, as well as to other physiological roles of gangliosides in membranes.  相似文献   

19.
(1) A quantitative study has been made of the binding of ouabain to the (Na+ + K+)-ATPase in homogenates prepared from brain tissue of the hawk moth, Manduca sexta. The results have been compared to those obtained in bovine brain microsomes. (2) The insect brain (Na+ + K+)-ATPase will bind ouabain either in the presence of Mg2+ and Pi, (‘Mg2+, Pi’ conditions) or in the presence of Na+, Mg2+, and an adenine nucleotide (‘nucleotide’ conditions) as is the case for the bovine brain (Na+ + K+)-ATPase. The binding conditions did not alter the total number of receptor sites measured at high ouabain concentrations in either tissue. (3) Potassium ion decreases the affinity (increases the KD) of ouabain to the M. sexta brain (Na+ + K+)-ATPase under both binding conditions. However, ouabain binding is more sensitive to K+ inhibition under the nucleotide conditions. In bovine brain ouabain binding is equally sensitive to K+ inhibition under the both conditions. (4) The enzyme-ouabain complex has a rate of dissociation that is 10-fold faster in the M. sexta preparation than in the bovine brain preparation. Because of this, the M. sexta (Na+ + K+)-ATPase has a higher KD for ouabain binding and is less sensitive to inhibition by ouabain than the bovine brain enzyme. (5) This data supports the hypothesis that two different conformational states of the M. sexta (Na+ + K+)-ATPase can bind ouabain.  相似文献   

20.
When cultured together with dead 35S-labelled cartilage discs or at the surface of [3H]proteoglycan[14C]collagen-coated plates, synovial cells from either arthritic or normal rabbit joints digested both the proteoglycan and the collagen of the substrates after a lag-period of 1–2 days. These digestions were inversely related to the age (number of subculture passages) of the synovial cells and they could be modulated by serum components that were either inhibitory or stimulatory. They were dependent on a protein synthesis by the cells and were paralleled, in young cultures, by the release of collagenase and of a proteoglycan-degrading neutral proteinase. The co-culture of synovial cells with macrophages or their culture with macrophage-conditioned culture media caused a more rapid and more extensive degradation of collagen and proteoglycan due to the stimulation of the synovial cells by a nondialysable macrophage factor. The production of this synovial cell-activating ‘matrix regulatory monokine’ by the macrophage was enhanced by several immunological or inflammatory stimuli such as lymphocyte factors, phagocytosis, asbestos fibres, endotoxin, adjuvant muramyl dipeptide or chemotactic formyl-methionyl peptide, as well as by other membrane-active agents (phorbol myristate acetate, concanavalin A). It is presumed that these interactions are of importance in the development of cartilage destruction in rheumatoid and other chronic inflammatory arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号