首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To express an increased level of recombinant Mefp1 (marine mussel adhesive protein) in soluble form, we constructed expression vectors encoding truncated OmpA signal peptide-Mefp1 fusion proteins. OmpA signal peptide (OmpASP) is the 21 residue peptide fragment of the 23 residue OmpA signal sequence cleavable by signal peptidase I. We successfully produced increased levels of soluble recombinant Mefp1 (rMefp1) with various deletions of OmpASP, and found that the increased expression was caused by the increased pI of the N-terminus of the fusion proteins (> or = 10.55). All the OmpA signal peptide segments of 3-21 amino acids in length had the same pI value (10.55). Our results suggest that the pI value of the truncated OmpASP (OmpASP(tr)) play an important role in directional signaling for the fusion protein, but we found no evidence for the presence of a secretion enhancer in OmpASP. For practical applications, we increased the expression of soluble rMefp1 with OmpASP(tr) peptides as directional signals, and obtained rMefp1 with the native amino terminus (nN-rMefp1) using an OmpASP(tr)| Xa leader sequence that contains the recognition site for Xa protease.  相似文献   

2.
The use of fusion proteins for recombinant protein expression in Escherichia coli has become popular because the carrier increases protein solubility, standardizes expression levels, and facilitates purification of the fusion products. However, we have observed that the peptide regions that fuse the carrier to the protein of interest bind E. coli Hsp70 molecular chaperones (DnaK) depending on their amino acid composition, resulting in an unwanted contamination during protein purification. Here we describe an approach that helps to circumvent this unwanted contamination. First, the appropriate amino acids surrounding and comprising the cloning site are chosen by using a software based on an algorithm already developed to decrease to a minimum the propensity of the fusion protein to bind DnaK. Second, DnaK contamination is significantly reduced by washing the fusion protein bound to the purification resin with MgATP plus soluble denatured E. coli proteins before elution. The approach can also be applied to eliminate other molecular chaperones.  相似文献   

3.
Protein insolubility is a major problem when producing recombinant proteins (e.g., to be used as antigens) from large cDNAs in Escherichia coli. Here, we describe a system using three convertible plasmid vectors to screen for soluble proteins produced in E. coli. This system experimentally identified any random cDNA fragments producing soluble protein domains. Shotgun fragments introduced into any of our three plasmids, which contain Gateway recombination sites, fused in-frame to the ORF of the protein tag. These plasmids produced N-terminal GST- and C-terminal three-frame-adaptive FLAG-tagged proteins, kanamycin-resistant gene-tagged proteins (which were pre-selected for in-frame fused cDNAs), or GFP-tagged fusion proteins. The latter is useful as a fluorescence indicator of protein folding. The Gateway recombination sites promote smooth conversion for enrichment of in-frame clones and facilitate both protein solubility assays and final production of proteins without the C-terminal tag. This high-throughput screening method is particularly useful for procedures that require the handling of many cDNAs in parallel.  相似文献   

4.
A modular series of versatile expression vectors is described for improved affinity purification of recombinant fusion proteins. Special features of these vectors include (i) serial affinity tags (hexahistidine-GST) to yield extremely pure protein even with very low expression rates, (ii) highly efficient proteolytic cleavage of affinity tags under a variety of conditions by hexahistidine-tagged tobacco etch virus (TEV) protease, (iii) PCR cloning design that results in a product of proteolytic cleavage with only one (a single glycine) or two (gly-ala) amino acids at the N-terminus of the protein, and (iv) expression in either Escherichia coli or Saccharomyces cerevisiae. In addition, singly hexahistidine-tagged proteins can be produced for purification under denaturing conditions and some vectors allow addition of five amino acid kinase recognition sites for easy radiolabeling of proteins. To illustrate the use of these vectors, all regulatory components of the yeast GAL regulon, rather than abundant highly soluble proteins, were produced and purified under native or denaturing conditions, and their biological activity was confirmed.  相似文献   

5.
The fusion of synthetic epitopes with proteins of interest is an important tool in the identification and characterization of recombinant proteins. Several mammalian expression vectors are commercially available containing unique identification tags or epitopes. These vectors offer a great advantage to researchers, as highly specific antibodies and purification resins against these specific epitopes are readily available. The tags facilitate immunologic assays and the purification of the recombinant proteins. The fusion of these epitopes with the recombinant proteins is not expected to alter the behavior of the protein of interest. In this report, we demonstrate that the mere expression of a cellular protein, hVIP/mov34, which we earlier identified as a cellular HIV-1 Vpr ligand, in two different vectors clearly altered its localization pattern in HeLa cells. Specifically, cloning of hVIP/mov34 in pcDNA3/HisA resulted in its nuclear localization, whereas the expression of this gene from a TOPO cloning expression vector, pcDNA3.1/V5/His, resulted in cytoplasmic expression. The native staining pattern of hVIP/mov34 using polyclonal antisera raised against hVIP/mov34 demonstrated cytoplasmic staining. During cloning, other leader sequences intended for targeting this protein into a cytoplasmic or a nuclear location were not fused to the actual ORF of this protein. Also, the amino acid sequence of the fusion region arising from cloning of hVIP/mov34 in both vectors does not match any reported NLS sequences. These results indicate that the choice of the expression vectors, as well as the position of synthetic epitopes, can significantly alter the behavior and the biology of recombinant proteins. This result suggests the need for a careful examination of these features when characterizing a newly identified protein.  相似文献   

6.
Gene cloning in appropriate vectors followed by protein overexpression in Escherichia coli is the common means for protein purification. This approach has many advantages but also some drawbacks; one of these is that many proteins fail to achieve a soluble conformation when overexpressed in E. coli. Hha protein belongs to a family of nucleoid-associated proteins functionally related to the H-NS family of proteins. Hha-like proteins and H-NS-like proteins are able to semidirectly bind to each other. We show in this work that overexpressed Hha or HisHha protein (a functional derivative of Hha containing a 6x His tag at the amino end) from a T7-polymerase promoter in BL21 DE3 E. coli strains results in the vast majority of the protein accumulated in insoluble aggregates (inclusion bodies). We also show that tandem overexpression of HisHha and H-NS increases the solubility of HisHha and prevents the formation of inclusion bodies. Single amino acid substitutions in the HisHha protein, which impair interaction with H-NS, render insoluble protein even when tandem-expressed with H-NS, tandem expression of an insoluble protein and an interacting partner is an experimental strategy which could be useful to increase the solubility of other overexpressed proteins in E. coli.  相似文献   

7.
In proteomics research, generation of recombinant proteins in their native, soluble form with large quantity is often a challenging task. To tackle the expression difficulties, different expression vectors with distinct affinity fusion tags, i.e. pET-43.1a (N-utilization substance A tag), pMAL-cRI (maltose binding protein tag) (MBP tag), pGEX-4T-2 (glutathione S-transferase tag), and pET-15b (hexahistidine tag) were compared for their effects on the productivity and solubility, which were assessed by SDS-PAGE and immunoblotting, of the integrin betaA domain. The incubation temperatures were tested for its effects on these parameters. Our data suggested that MBP tag enhanced the yield and solubility of the betaA domain protein, which can also be recognized using an anti-CD18 antibody, at room temperature incubation. Thus, the nature of fusion partner chosen for expression in bacteria and its incubation temperature would significantly affect the yield and solubility of the recombinant target protein.  相似文献   

8.
Three native E. coli proteins-NusA, GrpE, and bacterioferritin (BFR)-were studied in fusion proteins expressed in E. coli for their ability to confer solubility on a target insoluble protein at the C-terminus of the fusion protein. These three proteins were chosen based on their favorable cytoplasmic solubility characteristics as predicted by a statistical solubility model for recombinant proteins in E. coli. Modeling predicted the probability of soluble fusion protein expression for the target insoluble protein human interleukin-3 (hIL-3) in the following order: NusA (most soluble), GrpE, BFR, and thioredoxin (least soluble). Expression experiments at 37 degrees C showed that the NusA/hIL-3 fusion protein was expressed almost completely in the soluble fraction, while GrpE/hIL-3 and BFR/hIL-3 exhibited partial solubility at 37 degrees C. Thioredoxin/hIL-3 was expressed almost completely in the insoluble fraction. Fusion proteins consisting of NusA and either bovine growth hormone or human interferon-gamma were also expressed in E. coli at 37 degrees C and again showed that the fusion protein was almost completely soluble. Starting with the NusA/hIL-3 fusion protein with an N-terminal histidine tag, purified hIL-3 with full biological activity was obtained using immobilized metal affinity chromatography, factor Xa protease cleavage, and anion exchange chromatography.  相似文献   

9.
We have tested the efficacy of DNA immunization as a single vaccination modality for rhesus macaques followed by highly pathogenic SIVmac251 challenge. To further improve immunogenicity of the native proteins, we generated expression vectors producing fusion of the proteins Gag and Env to the secreted chemokine MCP3, targeting the viral proteins to the secretory pathway and to a beta-catenin (CATE) peptide, targeting the viral proteins to the intracellular degradation pathway. Macaques immunized with vectors expressing the MCP3-tagged fusion proteins developed stronger antibody responses. Following mucosal challenge with pathogenic SIVmac251, the vaccinated animals showed a statistically significant decrease in viral load (P = 0.010). Interestingly, macaques immunized with a combination of vectors expressing three forms of antigens (native protein and MCP3 and CATE fusion proteins) showed the strongest decrease in viral load (P = 0.0059). Postchallenge enzyme-linked immunospot values for Gag and Env as well as gag-specific T-helper responses correlated with control of viremia. Our data show that the combinations of DNA vaccines producing native and modified forms of antigens elicit more balanced immune responses able to significantly reduce viremia for a long period (8 months) following pathogenic challenge with SIVmac251.  相似文献   

10.
This article describes a simple and potentially scalable microfiltration method for purification of recombinant proteins. This method is based on the fact that when an elastin-like polypeptide (ELP) is fused to a target protein, the inverse phase transition behavior of the ELP tag is imparted to the fusion protein. Triggering the phase transition of a solution of the ELP fusion protein by an increase in temperature, or isothermally by an increase in salt concentration, results in the formation of micron-sized aggregates of the ELP fusion protein. In this article, it is shown that these aggregates are efficiently retained by a microfiltration membrane, while contaminating E. coli proteins passed through the membrane upon washing. Upon reversing the phase transition by flow of Milli-Q water, soluble, pure, and functionally active protein is eluted from the membrane. Proof-of principle of this approach was demonstrated by purifying a fusion of thioredoxin with ELP (Trx-ELP) with greater than 95% recovery of protein and with greater than 95% purity (as estimated from SDS-PAGE gels). The simplicity of this method is demonstrated for laboratory scale purification by purifying Trx-ELP from cell lysate using a syringe and a disposable microfiltration cartridge. The potential scalability of this purification as an automated, continuous industrial-scale process is also demonstrated using a continuous stirred cell equipped with a microfiltration membrane.  相似文献   

11.
TAT-mediated protein transduction into mammalian cells   总被引:39,自引:0,他引:39  
Manipulation of mammalian cells has been achieved by the transfection of expression vectors, microinjection, or diffusion of peptidyl mimetics. While these approaches have been somewhat successful, the classic manipulation methods are not easily regulated and can be laborious. One approach to circumvent these problems is the use of HIV TAT-mediated protein transduction. Although this technology was originally described in 1988, few improvements were reported in the subsequent 10 years. In the last few years, significant steps have been taken to advance this technology into a broadly applicable method that allows for the rapid introduction of full-length proteins into primary and transformed cells. The technology requires the synthesis of a fusion protein, linking the TAT transduction domain to the molecule of interest using a bacterial expression vector, followed by the purification of this fusion protein under either soluble or denaturing conditions. The purified fusion protein can be directly added to mammalian cell culture or injected in vivo into mice. Protein transduction occurs in a concentration-dependent manner, achieving maximum intracellular concentrations in less than 5 min, with nearly equal intracellular concentrations between all cells in the transduced population. Full-length TAT fusion proteins have been used to address a number of biological questions, relating to cell cycle progression, apoptosis, and cellular architecture. Described here are the fundamental requirements for the creation, isolation, and utilization of TAT-fusion proteins to affect mammalian cells. A detailed protocol for production and transduction of TAT-Cdc42 into primary cells is given to illustrate the technique.  相似文献   

12.
G Banting  J P Luzio  P Braghetta  B Brake  K K Stanley 《Gene》1991,107(1):127-132
Despite the large number of expression vectors now available, none provide the facility of allowing fusion and nonfusion protein production from the same vector system. In some situations it is preferable to obtain an insoluble fusion protein, in others a soluble nonfusion protein may be required. We have designed, constructed and tested a modification of the pEX vectors, in which it is possible to express the product of a suitably inserted cDNA either as part of a Cro-beta-galactosidase (Cro-beta Gal) fusion or as a delta Cro fusion which contains only nine noninsert-encoded amino acids at its N terminus. The conversion from Cro-beta Gal to delta Cro fusion protein production is achieved by a simple intramolecular deletion of lacZ sequence from the pUBEX vector, to create the pUBSEX variant. Plasmid pUBEX can be induced to produce large amounts of insoluble Cro-beta Gal fusion proteins, whereas pUBSEX will produce predominantly soluble delta Cro fusion proteins.  相似文献   

13.
One of the first key steps in structural genomics is high-throughput expression and rapid screening to select highly soluble proteins, the preferred candidates for crystal production. Here we describe the methodology used at the Berkeley Structural Genomics Center (BSGC) for automated parallel expression and small-scale purification of fusion proteins using a 96-well format. Our robotic method includes cell lysis, soluble fraction separation and purification with affinity resins. For detection of His-tagged proteins in the soluble fractions and after affinity resin elution, a dot-blot procedure with an anti-His-antibody is used. The expression level and molecular mass of recombinant proteins are checked by SDS-PAGE. With this approach, we are able to obtain beneficial information to be used for large-scale protein expression and purification.  相似文献   

14.
Yang Y  Ma J  Song Z  Wu M 《FEBS letters》2002,532(1-2):36-44
Several novel prokaryotic and eukaryotic expression vectors were constructed for protein transduction and subcellular localization. These vectors employed an N-terminal stretch of 11 basic amino acid residues (47-57) from the human immunodeficiency virus type 1 (HIV-1) TAT protein transduction domain (PTD) for protein translocation and cellular localization. The vectors also contained a six-histidine (His(6)) tag at the N- or C-terminus for convenient purification and detection, and a multiple cloning site for easy insertion of foreign genes. Some heterologous genes including HSV-TK, Bcl-rambo, Smac/DIABLO and GFP were fused in-frame to TAT PTD and successfully overexpressed in Escherichia coli. The purified TAT-GFP fusion protein was able to transduce into the mammalian cells and was found to locate mainly in the cytosol when exogenously added to the cell culture medium. However, using a transfection system, mammalian-expressed TAT-GFP predominantly displayed a nuclear localization and nucleolar accumulation in mammalian cell lines. This discrepancy implies that the exact subcellular localization of transduced protein may depend on cell type, the nature of imported proteins and delivery approach. Taken together, our results demonstrate that a TAT PTD length of 11 amino acids was sufficient to confer protein internalization and its subsequent cellular localization. These novel properties allow these vectors to be useful for studying protein transduction and nuclear import.  相似文献   

15.
With demand increasing for the production of many different proteins for biophysical or biochemical analyses, rapid methods are needed for the cloning, expression and purification of native recombinant proteins. In particular, generic methods are required that are independent of the target gene sequence. To address this challenge we have constructed four Escherichia coli expression vectors that can be used for ligation independent cloning (LIC) of an amplified target gene sequence. These vectors represent the combinatorial pairing of two different parent vector backbones with two different affinity tags. The target gene is cloned downstream of the sequence coding for an affinity-tagged small ubiquitin related modifier (SUMO). Using enhanced green fluorescent protein (eGFP) as an example we demonstrate that the LIC procedure works with high efficiency for all four of the vectors. We also show that the resultant recombinant SUMO fusion proteins can be overexpressed in E. coli and readily isolated by standard affinity purification techniques. Importantly, the purified fusion product can be treated with recombinant SUMO hydrolase to yield a mature target protein with any residue except proline at the amino terminus. We demonstrate an application of this by generating recombinant eGFP containing a non-native amino terminal cysteine residue and using it as a substrate for expressed protein ligation (EPL). The reagents and techniques described here represent a generic method for the rapid cloning and production of a target protein, and would be appropriate for a high throughput genomic scale expression project.  相似文献   

16.
The presence of extra N- and C- terminal residues can play a major role in the stability, solubility and yield of recombinant proteins. Pfg27 is a 27K soluble protein that is essential for sexual development in Plasmodium falciparum. It was over-expressed using the pMAL-p2 vector as a fusion protein with the maltose binding protein. Six different constructs were made and each of the fusion proteins were expressed and purified. Our results show that the fusion proteins were labile and only partially soluble in five of the constructs resulting in very poor yields. Intriguingly, in the sixth construct, the yield of soluble fusion protein with an extended carboxyl terminus of 17 residues was several fold higher. Various constructs with either N-terminal or smaller C-terminal extensions failed to produce any soluble fusion protein. Furthermore, all five constructs produced Pfg27 that precipitated after protease cleavage from its fusion partner. The sixth construct, which produced soluble protein in high yields, also gave highly stable and soluble Pfg27 after cleavage of the fusion. These results indicate that extra amino acid residues at the termini of over-expressed proteins can have a significant effect on the folding of proteins expressed in E. coli. Our data suggest the potential for development of a novel methodology, which will entail construction of fusion proteins with maltose binding protein as a chaperone on the N-terminus and a C-terminal 'solubilization tag'. This system may allow large-scale production of those proteins that have a tendency to misfold during expression.  相似文献   

17.
An integrated bioprocess has been developed suitable for production of recombinant peptides using a gene multimerization strategy and site-specific cleavage of the resulting gene product. The process has been used for production in E. coli of the human proinsulin C-peptide via a fusion protein BB-C7 containing seven copies of the 31-residues C-peptide monomer. The fusion protein BB-C7 was expressed at high level, 1.8 g l(-1), as a soluble gene product in the cytoplasm. A heat treatment procedure efficiently released the BB-C7 fusion protein into the culture medium. This step also served as an initial purification step by precipitating the majority of the host cell proteins, resulting in a 70% purity of the BB-C7 fusion protein. Following cationic polyelectrolyte precipitation of the nucleic acids and anion exchange chromatography, native C-peptide monomers were obtained by enzymatic cleavage at flanking arginine residues. The released C-peptide material was further purified by reversed-phase chromatography and size exclusion chromatography. The overall yield of native C-peptide at a purity exceeding 99% was 400 mg l(-1) culture, corresponding to an overall recovery of 56%. The suitability of this process also for the production of other recombinant proteins is discussed.  相似文献   

18.
The aims of high-throughput (HTP) protein production systems are to obtain well-expressed and highly soluble proteins, which are preferred candidates for use in structure-function studies. Here, we describe the development of an efficient and inexpensive method for parallel cloning, induction, and cell lysis to produce multiple fusion proteins in Escherichia coli using a 96-well format. Molecular cloning procedures, used in this HTP system, require no restriction digestion of the PCR products. All target genes can be directionally cloned into eight different fusion protein expression vectors using two universal restriction sites and with high efficiency (>95%). To screen for well-expressed soluble fusion protein, total cell lysates of bacteria culture ( approximately 1.5 mL) were subjected to high-speed centrifugation in a 96-tube format and analyzed by multiwell denaturing SDS-PAGE. Our results thus far show that 80% of the genes screened show high levels of expression of soluble products in at least one of the eight fusion protein constructs. The method is well suited for automation and is applicable for the production of large numbers of proteins for genome-wide analysis.  相似文献   

19.
A recombinant fusion protein system for the production, oxidation, and purification of short peptides containing a single disulfide bond is described. The peptides are initially expressed in Escherichia coli as a fusion to an engineered mutant of the N-terminal SH2 domain of the intracellular phosphatase, SHP-2. This small protein domain confers several important properties which facilitate the production of disulfide-containing peptides: (i) it is expressed at high levels in E. coli; (ii) it can be purified via a hexahistidine tag and reverse-phase HPLC; (iii) it contains no endogenous cysteine residues, allowing the formation of an intrapeptide disulfide bond while still attached to the fusion partner; (iv) it is highly soluble in native buffers, facilitating the production of very hydrophobic peptides and the direct use of fusion products in biochemical assays; (v) it contains a unique methionine residue at the junction of the peptide and fusion partner to facilitate peptide cleavage by treatment with cyanogen bromide (CNBr). This method is useful for producing peptides, which are otherwise difficult to prepare through traditional chemical synthesis approaches, and this has been demonstrated by preparing a number of hydrophobic disulfide-containing peptides derived from phage-display libraries.  相似文献   

20.
Current baculovirus expression systems typically produce soluble proteins that accumulate within the infected insect cell or are secreted into the growth medium. A system has now been developed for the incorporation of foreign proteins, along with the matrix protein, polyhedrin, into baculovirus occlusion bodies. Initial studies showed that a recombinant virus expressing a translational fusion between polyhedrin and GFP did not form occlusion bodies. However, a baculovirus coexpressing native polyhedrin and the polyhedrin-GFP fusion protein formed occlusion bodies that fluoresced under UV light, demonstrating that they included the polyhedrin-GFP fusion protein. This was confirmed by immunoblot analysis. Thus, incorporation of a foreign protein into occlusion bodies depends on an interaction between native polyhedrin and the polyhedrin fusion protein. Electron microscopy demonstrated that the occlusion bodies containing GFP also incorporated virions as expected. These ColorPol occlusion bodies were as infectious to insect larvae as occlusion bodies produced by wild-type virus. This new system expands the capabilities for foreign gene expression by baculoviruses, which has implications for biopesticide design, novel vaccine delivery systems, and fusion protein purification applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号