首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA methylation plays a crucial role in the regulation of gene expression, cell differentiation and development. Previous studies have reported age-related alterations of methylation levels in the human brain across the lifespan, but little is known about whether the observed association with age is confounded by common neuropathologies among older persons. Using genome-wide DNA methylation data from 740 postmortem brains, we interrogated 420,132 CpG sites across the genome in a cohort of individuals with ages from 66 to 108 years old, a range of ages at which many neuropathologic indices become quite common. We compared the association of DNA methylation prior to and following adjustment for common neuropathologies using a series of linear regression models. In the simplest model adjusting for technical factors including batch effect and bisulfite conversion rate, we found 8156 CpGs associated with age. The number of CpGs associated with age dropped by more than 10% following adjustment for sex. Notably, after adjusting for common neuropathologies, the total number of CpGs associated with age was reduced by approximately 40%, compared to the sex-adjusted model. These data illustrate that the association of methylation changes in the brain with age is inflated if one does not account for age-related brain pathologies.This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.  相似文献   

2.
3.
Biological ageing is connected to life history variation across ecological scales and informs a basic understanding of age-related declines in organismal function. Altered DNA methylation dynamics are a conserved aspect of biological ageing and have recently been modelled to predict chronological age among vertebrate species. In addition to their utility in estimating individual age, differences between chronological and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and these discrepancies are linked to disease risk and multiple life history traits. Although evidence suggests that patterns of DNA methylation can describe ageing in plants, predictions with epigenetic clocks have yet to be performed. Here, we resolve the DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this species within 6% of its maximum lifespan. Although patterns of CHH-methylation showed little association with age, both CpG and CHG-methylation contexts were strongly associated with ageing, largely becoming hypomethylated with age. Among age-associated loci were those in close proximity to malate dehydrogenase, NADH dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the first epigenetic clocks in plants and demonstrates the universality of age-associated DNA methylation dynamics which can inform conservation and management practices, as well as our ecological and evolutionary understanding of biological ageing in plants.  相似文献   

4.

Background

Schizophrenia is a severe neuropsychiatric disorder that is hypothesized to result from disturbances in early brain development. There is mounting evidence to support a role for developmentally regulated epigenetic variation in the molecular etiology of the disorder. Here, we describe a systematic study of schizophrenia-associated methylomic variation in the adult brain and its relationship to changes in DNA methylation across human fetal brain development.

Results

We profile methylomic variation in matched prefrontal cortex and cerebellum brain tissue from schizophrenia patients and controls, identifying disease-associated differential DNA methylation at multiple loci, particularly in the prefrontal cortex, and confirming these differences in an independent set of adult brain samples. Our data reveal discrete modules of co-methylated loci associated with schizophrenia that are enriched for genes involved in neurodevelopmental processes and include loci implicated by genetic studies of the disorder. Methylomic data from human fetal cortex samples, spanning 23 to 184 days post-conception, indicates that schizophrenia-associated differentially methylated positions are significantly enriched for loci at which DNA methylation is dynamically altered during human fetal brain development.

Conclusions

Our data support the hypothesis that schizophrenia has an important early neurodevelopmental component, and suggest that epigenetic mechanisms may mediate these effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0483-2) contains supplementary material, which is available to authorized users.  相似文献   

5.
DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits.  相似文献   

6.
The accumulation of epigenetic changes was proposed to contribute to the age-related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18-89 years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass spectrometry, we investigated variation in global (LINE1) DNA methylation and in DNA methylation at INS, KCNQ1OT1, IGF2, GNASAS, ABCA1, LEP, and CRH, candidate loci for common diseases. Except for KCNQ1OT1, interindividual variation in locus-specific DNA methylation was larger in old individuals than in young individuals, ranging from 1.2-fold larger at ABCA1 (P = 0.010) to 1.6-fold larger at INS (P = 3.7 × 10(-07) ). Similarly, there was more within-MZ-pair discordance in old as compared with young MZ pairs, except for GNASAS, ranging from an 8% increase in discordance each decade at CRH (P = 8.9 × 10(-06) ) to a 16% increase each decade at LEP (P = 2.0 × 10(-08) ). Still, old MZ pairs with strikingly similar DNA methylation were also observed at these loci. After 10-year follow-up in elderly twins, the variation in DNA methylation showed a similar pattern of change as observed cross-sectionally. The age-related increase in methylation variation was generally attributable to unique environmental factors, except for CRH, for which familial factors may play a more important role. In conclusion, sustained epigenetic differences arise from early adulthood to old age and contribute to an increasing discordance of MZ twins during aging.  相似文献   

7.
8.
Experience‐dependent changes in DNA methylation can exert profound effects on neuronal function and behaviour. A single learning event can induce a variety of DNA modifications within the neuronal genome, some of which may be common to all individuals experiencing the event, whereas others may occur in a subset of individuals. Variations in experience‐induced DNA methylation may subsequently confer increased vulnerability or resilience to the development of neuropsychiatric disorders. However, the detection of experience‐dependent changes in DNA methylation in the brain has been hindered by the interrogation of heterogeneous cell populations, regional differences in epigenetic states and the use of pooled tissue obtained from multiple individuals. Methyl CpG Binding Domain Ultra‐Sequencing (MBD Ultra‐Seq) overcomes current limitations on genome‐wide epigenetic profiling by incorporating fluorescence‐activated cell sorting and sample‐specific barcoding to examine cell‐type‐specific CpG methylation in discrete brain regions of individuals. We demonstrate the value of this method by characterizing differences in 5‐methylcytosine (5mC) in neurons and non‐neurons of the ventromedial prefrontal cortex of individual adult C57BL/6 mice, using as little as 50 ng of genomic DNA per sample. We find that the neuronal methylome is characterized by greater CpG methylation as well as the enrichment of 5mC within intergenic loci. In conclusion, MBD Ultra‐Seq is a robust method for detecting DNA methylation in neurons derived from discrete brain regions of individual animals. This protocol will facilitate the detection of experience‐dependent changes in DNA methylation in a variety of behavioural paradigms and help identify aberrant experience‐induced DNA methylation that may underlie risk and resiliency to neuropsychiatric disease.  相似文献   

9.
Aging is characterized by numerous molecular changes, such as accumulation of molecular damage and altered gene expression, many of which are linked to DNA methylation. Here, we characterize the blood DNA methylome across 16 age groups of mice and report numerous global, region‐ and site‐specific features, as well as the associated dynamics of methylation changes. Transition of the methylome throughout lifespan was not uniform, with many sites showing accelerated changes in late life. The associated genes and promoters were enriched for aging‐related pathways, pointing to a fundamental link between DNA methylation and control of the aging process. Calorie restriction both shifted the overall methylation pattern and was accompanied by its gradual age‐related remodeling, the latter contributing to the lifespan‐extending effect. With age, both highly and poorly methylated sites trended toward intermediate levels, and aging was accompanied by an accelerated increase in entropy, consistent with damage accumulation. However, the entropy effects differed for the sites that increased, decreased and did not change methylation with age. Many sites trailed behind, whereas some followed or even exceeded the entropy trajectory and altered the developmental DNA methylation pattern. The patterns we observed in certain genomic regions were conserved between humans and mice, suggesting common principles of functional DNA methylome remodeling and its critical role in aging. The highly resolved DNA methylome remodeling provides an excellent model for understanding systemic changes that characterize the aging process.  相似文献   

10.
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ∼3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ∼2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ∼750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

11.
《Epigenetics》2013,8(11):1540-1556
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ~3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ~2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ~750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

12.

Background

Aberrant DNA methylation is common in lung adenocarcinoma, but its timing in the phases of tumor development is largely unknown. Delineating when abnormal DNA methylation arises may provide insight into the natural history of lung adenocarcinoma and the role that DNA methylation alterations play in tumor formation.

Methodology/Principal Findings

We used MethyLight, a sensitive real-time PCR-based quantitative method, to analyze DNA methylation levels at 15 CpG islands that are frequently methylated in lung adenocarcinoma and that we had flagged as potential markers for non-invasive detection. We also used two repeat probes as indicators of global DNA hypomethylation. We examined DNA methylation in 249 tissue samples from 93 subjects, spanning the putative spectrum of peripheral lung adenocarcinoma development: histologically normal adjacent non-tumor lung, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS, formerly known as bronchioloalveolar carcinoma), and invasive lung adenocarcinoma. Comparison of DNA methylation levels between the lesion types suggests that DNA hypermethylation of distinct loci occurs at different time points during the development of lung adenocarcinoma. DNA methylation at CDKN2A ex2 and PTPRN2 is already significantly elevated in AAH, while CpG islands at 2C35, EYA4, HOXA1, HOXA11, NEUROD1, NEUROD2 and TMEFF2 are significantly hypermethylated in AIS. In contrast, hypermethylation at CDH13, CDX2, OPCML, RASSF1, SFRP1 and TWIST1 and global DNA hypomethylation appear to be present predominantly in invasive cancer.

Conclusions/Significance

The gradual increase in DNA methylation seen for numerous loci in progressively more transformed lesions supports the model in which AAH and AIS are sequential stages in the development of lung adenocarcinoma. The demarcation of DNA methylation changes characteristic for AAH, AIS and adenocarcinoma begins to lay out a possible roadmap for aberrant DNA methylation events in tumor development. In addition, it identifies which DNA methylation changes might be used as molecular markers for the detection of preinvasive lesions.  相似文献   

13.

Background

Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.5 years old) and middle-aged (7 years old) pigs as models to survey genome-wide DNA methylation in the longissimus dorsi muscle using a methylated DNA immunoprecipitation sequencing approach.

Results

We observed a tendency toward a global loss of DNA methylation in the gene-body region of the skeletal muscle of the middle-aged pigs compared with the young group. We determined the genome-wide gene expression pattern in the longissimus dorsi muscle using microarray analysis and performed a correlation analysis using DMR (differentially methylated region)-mRNA pairs, and we found a significant negative correlation between the changes in methylation levels within gene bodies and gene expression. Furthermore, we identified numerous genes that show age-related methylation changes that are potentially involved in the aging process. The methylation status of these genes was confirmed using bisulfite sequencing PCR. The genes that exhibited a hypomethylated gene body in middle-aged pigs were over-represented in various proteolysis and protein catabolic processes, suggesting an important role for these genes in age-related muscle atrophy. In addition, genes associated with tumorigenesis exhibited aged-related differences in methylation and expression levels, suggesting an increased risk of disease associated with increased age.

Conclusions

This study provides a comprehensive analysis of genome-wide DNA methylation patterns in aging pig skeletal muscle. Our findings will serve as a valuable resource in aging studies, promoting the pig as a model organism for human aging research and accelerating the development of comparative animal models in aging research.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-653) contains supplementary material, which is available to authorized users.  相似文献   

14.
In humans, considerable variation in methylation at single loci and repetitive elements in various cells and tissues is observed. Recently, several inter- and intra-tissue correlations for DNA methylation have been reported. To investigate the extent and reproducibility of such correlations, we investigated inter- and intra-tissue methylation correlations among seven different loci in 9 different tissues in a population of 100 healthy seven-week-old CD1 outbred mice. We used a highly quantitative approach to measure methylation levels to high accuracy at two single loci in the alpha-actin and myosine light chain promoters, at three differentially methylated regions of the Peg3, Snrpn and Lit1 genes associated with imprinted loci, and at two repetitive elements in the Line-1 and IAP-LTR genes in the various tissues. In this population of mice, methylation at several loci was sex-associated and intra-tissue correlations among the studied loci were observed for brain and spleen. Inter-tissue correlations were rarely observed. To investigate method-dependent experimental variability, we re-analyzed the same spleen and tongue samples using SIRPH and pyrosequencing methods and reconfirmed intra-tissue correlations for spleen and sex-associated correlations for DNA methylation for tongue. When we repeated DNA methylation measurements for a second mouse population raised under similar conditions three months later, we did not detect sex-associated or intra-tissues correlations. Additional studies that examine large numbers of loci may be required to further understand the factors that influence stability of DNA methylation.  相似文献   

15.
16.
17.
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master ‘clock of age’ (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial – specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.  相似文献   

18.
Chronic exposure to glucocorticoids (GCs) can lead to psychiatric complications through epigenetic mechanisms such as DNA methylation (DNAm). We sought to determine whether epigenetic changes in a peripheral tissue can serve as a surrogate for those in a relatively inaccessible tissue such as the brain. DNA extracted from the hippocampus and blood of mice treated with GCs or vehicle solution was assayed using a genome-wide DNAm platform (Methyl-Seq) to identify differentially methylated regions (DMRs) induced by GC treatment. We observed that ~70% of the DMRs in both tissues lost methylation following GC treatment. Of the 3,095 DMRs that mapped to the same genes in both tissues, 1,853 DMRs underwent DNAm changes in the same direction. Interestingly, only 209 DMRs (<7%) overlapped in genomic coordinates between the 2 tissues, suggesting tissue-specific differences in GC-targeted loci. Pathway analysis showed that the DMR-associated genes were members of pathways involved in metabolism, immune function, and neurodevelopment. Also, changes in cell type composition of blood and brain were examined by fluorescence-activated cell sorting. Separation of the cortex into neuronal and non-neuronal fractions and the leukocytes into T-cells, B-cells, and neutrophils showed that GC-induced methylation changes primarily occurred in neurons and T-cells, with the blood tissue also undergoing a shift in the proportion of constituent cell types while the proportion of neurons and glia in the brain remained stable. From the current pilot study, we found that despite tissue-specific epigenetic changes and cellular heterogeneity, blood can serve as a surrogate for GC-induced changes in the brain.  相似文献   

19.
The human brain has been proposed to represent a genetic mosaic, containing a small but constant number of neurons with an amount of DNA exceeding the diploid level that appear to be generated through various chromosome segregation defects initially. While a portion of these cells apparently die during development, neurons with abnormal chromosomal copy number have been identified in the mature brain. This genomic alteration might to lead to chromosomal instability affecting neuronal viability and could thus contribute to age-related mental disorders. Changes in the frequency of neurons with such structural genomic variation in the adult and aging brain, however, are unknown. Here, we quantified the frequency of neurons with a more than diploid DNA content in the cerebral cortex of normal human brain and analyzed its changes between the fourth and ninth decades of life. We applied a protocol of slide-based cytometry optimized for DNA quantification of single identified neurons, which allowed to analyze the DNA content of about 500 000 neurons for each brain. On average, 11.5% of cortical neurons showed DNA content above the diploid level. The frequency of neurons with this genomic alteration was highest at younger age and declined with age. Our results indicate that the genomic variation associated with DNA content exceeding the diploid level might compromise viability of these neurons in the aging brain and might thus contribute to susceptibilities for age-related CNS disorders. Alternatively, a potential selection bias of "healthy aging brains" needs to be considered, assuming that DNA content variation above a certain threshold associates with Alzheimer's disease.  相似文献   

20.

Background

DNA methylation is an epigenetic modification that changes with age in human tissues, although the mechanisms and specificity of this process are still poorly understood. We compared CpG methylation changes with age across 283 human blood, brain, kidney, and skeletal muscle samples using methylation arrays to identify tissue-specific age effects.

Results

We found age-associated CpGs (ageCGs) that are both tissue-specific and common across tissues. Tissue-specific ageCGs are frequently located outside CpG islands with decreased methylation, and common ageCGs show the opposite trend. AgeCGs are significantly associated with poorly expressed genes, but those with decreasing methylation are linked with higher tissue-specific expression levels compared with increasing methylation. Therefore, tissue-specific gene expression may protect against common age-dependent methylation. Distinguished from other tissues, skeletal muscle ageCGs are more associated with expression, enriched near genes related to myofiber contraction, and closer to muscle-specific CTCF binding sites. Kidney-specific ageCGs are more increasingly methylated compared to other tissues as measured by affiliation with kidney-specific expressed genes. Underlying chromatin features also mark common and tissue-specific age effects reflective of poised and active chromatin states, respectively. In contrast with decreasingly methylated ageCGs, increasingly methylated ageCGs are also generally further from CTCF binding sites and enriched within lamina associated domains.

Conclusions

Our data identified common and tissue-specific DNA methylation changes with age that are reflective of CpG landscape and suggests both common and unique alterations within human tissues. Our findings also indicate that a simple epigenetic drift model is insufficient to explain all age-related changes in DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号