首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of Ca2+ -calmodulin- and cyclic AMP-dependent protein kinases has been suggested to be involved in stimulus-secretion coupling in the pancreatic beta-cell. To study the properties of suc kinases and their endogenous protein substrates homogenates of rat islets of Langerhans were incubated with [gamma-32P]ATP. Phosphorylated proteins were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and detected by autoradiography. The phosphorylation of certain proteins could be enhanced by Ca2+ plus calmodulin or by cyclic AMP. The major effect of Ca2+ and calmodulin was to stimulate the phosphorylation of a protein (P53) of molecular weight 53,100 +/- 500 (n = 15). Maximum phosphorylation of protein P53 occurred within 2 min with 2 micrometers free Ca2+ and 0.7 micrometers calmodulin. Incorporation of label into protein P53 was inhibited by trifluoperazine or W7 but not by cyclic AMP-dependent protein kinase inhibitor. Phosphorylation of a proteins of similar molecular weight could be enhanced to a lesser extent in the absence of Ca2+ but in the presence of cyclic AMP and 3-isobutylmethylxanthine: this phosphorylation was blocked by cyclic AMP-dependent protein kinase inhibitor. Cyclic AMP also stimulated incorporation of label into polypeptides of molecular weights 55,000 and 70-80,000. The results are consistent with the hypothesis that protein phosphorylation mechanisms may play a role in the regulation of insulin secretion.  相似文献   

2.
Sarcomplasmic reticulum from rabbit fast skeletal muscle contains intrinsic protein kinase activity (ATP:protein phosphotransferase, EC 2.7.1.37) and a substrate. The protein kinase activity was Mg2+ dependent and could also phosphorylate exogenous protein substrates. Autophosphorylation of sarcoplasmic reticulum vesicles was not stimulated by cyclic AMP, neither was it inhibited by the heat-stable protein kinase inhibitor protein. The phosphorylated membranes had the characteristics of a protein with a phosphoester bond. An average of 73 pmol Pi/mg protein were incorporated in 10 min at 30 degrees C. Addition of exogenous cyclic AMP-dependent protein kinase increased the endogenous level of phosphorylation by 25-100%. Sarcoplasmic reticulum membrane phosphorylation, mediated by either endogenous cyclic AMP-independent or exogenous cyclic AMP-dependent protein kinase, occurred on a 100 000 dalton protein and both enzyme activities resulted in enhanced calcium uptake and Ca2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3), in a manner similar to cardiac microsomal preparations. Regulation of Ca2+ transport in skeletal sarcoplasmic reticulum may be mediated by phosphorylation of a 100 000 dalton component of these membranes.  相似文献   

3.
Protein phosphorylation was examined in cytosolic extracts of adult rat anterior pituitary. In the presence of both cyclic AMP and calmodulin, the phosphorylation of a Mr 22,000 protein was markedly stimulated. Cyclic AMP and calmodulin must both be present in order for this effect to be observed; cyclic GMP does not substitute for cyclic AMP, and the effect is abolished by either trifluoperazine or the heat-stable inhibitor of cyclic AMP-dependent protein kinase. Two-dimensional isoelectric focusing sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that there are three molecular species of the Mr 22,000 phosphoprotein, with pI values ranging from 6.8 to 8.1. Phosphorylation of this protein is maximally stimulated by 5 microM cyclic AMP and 5.7 microM calmodulin. The effect of cyclic AMP plus calmodulin is enhanced by preincubation and requires a divalent cation; maximal phosphorylation takes place at 100 microM Mn2+, although higher concentrations of Mg2+ and Co2+ support an equivalent degree of phosphorylation. Cyclic AMP plus calmodulin-dependent protein phosphorylation was not detected in other rat tissues surveyed, including brain, testes, adrenal, kidney, liver, spleen, skeletal muscle, pineal, or posterior pituitary. These results help to explain the previous findings of Brattin and Portanova (Brattin, W.J., Jr., and Portanova, R. (1981) Mol. Cell. Endocr. 23, 77-90) of in vivo but not in vitro phosphorylation of three Mr 20,000 anterior pituitary proteins and indicate a possible point of convergence for calcium and cyclic AMP actions in the anterior pituitary.  相似文献   

4.
Angiotensin II, catecholamines, and vasopressin are thought to stimulate hepatic glycogenolysis and gluconeogenesis via a cyclic AMP-independent mechanism that requires calcium ion. The present study explores the possibility that angiotensin II and vasopressin control the activity of regulatory enzymes in carbohydrate metabolism through Ca2+-dependent changes in their state of phosphorylation. Intact hepatocytes labeled with [32P]PO43- were stimulated with angiotensin II, glucagon, or vasopressin and 30 to 33 phosphorylated proteins resolved from the cytoplasmic fraction of the cell by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. Treatment of the cells with angiotensin II or vasopressin increased the phosphorylation of 10 to 12 of these cytosolic proteins without causing measurable changes in cyclic AMP-dependent protein kinase activity. Glucagon stimulated the phosphorylation of the same set of 11 to 12 proteins through a marked increase in cyclic AMP-dependent protein kinase activity. The molecular weights of three of the protein bands whose phosphorylation was increased by these hormones correspond to the subunit molecular weights of phosphorylase (Mr = 93,000), glycogen synthase (Mr = 85,000), and pyruvate kinase (Mr = 61,000). Two of these phosphoprotein bands were positively identified as phosphorylase and pyruvate kinase by affinity chromatography and immunoprecipitation, respectively. Incubation of hepatocytes in a Ca2+-free medium completely abolished the effects of angiotensin II and vasopressin on protein phosphorylation but did not alter those of glucagon. Treatment of hepatocytes with angiotensin II, glucagon, or vasopressin stimulated phosphorylase activity by 250 to 260%, inhibited glycogen synthase activity by 50%, and inhibited pyruvate kinase activity by 30 to 35% (peptides) to 70% (glucagon). The effects of angiotensin II and vasopressin on the activity of all three enzymes were completely abolished if the cells were incubated in a Ca2+-free medium while those of glucagon were not altered. The results imply that angiotensin II, catecholamines, and vasopressin control hepatic carbohydrate metabolism through a Ca2+-requiring, cyclic AMP-independent pathway that leads to the phosphorylation of important regulatory enzymes.  相似文献   

5.
Filamin is a high molecular weight actin-binding protein found in large quantities in smooth muscle and other non-muscle cells. We have studied the phosphorylation of filamin in a mammalian smooth muscle, the guinea pig vas deferens. Intact vas deferens incorporated [32P]orthophosphate into filamin. Incubation of particulate fractions of vas deferens with [gamma-32P]ATP resulted in 32P-labeling of filamin. Cyclic AMP stimulated this phosphorylation, whereas cyclic GMP and Ca2+ had no effect. Purified vas deferens filamin can be phosphorylated by purified cyclic AMP-dependent protein kinase. We have compared cyclic AMP and cyclic GMP effects on phosphorylation in smooth muscle. Cyclic GMP stimulated phosphorylation of two particulate proteins, G-I (Mr = 130,000) a protein previously described by Casnellie, J. E., and Greengard, P. (1974) Proc. Natl. Acad, Sci. U.S.A. 71, 1891-1895 and G-III (Mr = 240,000). Both proteins and the kinase responsible for their phosphorylation appear to be membrane-bound. Phosphorylation of both proteins is stimulated by cyclic GMP (Ka = 3 x 10(-8) M), cyclic AMP (Ka = 3 x 10(-7) M), and to a lesser degree by Ca2+. In contrast, filamin phosphorylation is due to a soluble kinase stimulated only by cyclic AMP (Ka = 3 x 10(-7) M) and not by cyclic GMP or Ca2+.  相似文献   

6.
In isolated rat liver cells, the inhibition of L-pyruvate kinase (L-PK) by a cyclic AMP-dependent phosphorylation mechanism is involved in the hormonal control of glycolysis and gluconeogenesis. The aim of this study was to ascertain whether or not the in vivo phosphorylation state of the enzyme was maintained during the liver perfusion used to prepare isolated liver cells. When the L-PK phosphorylation state was studied indirectly in liver extracts by kinetic measurement, it was found that, during the perfusion, the S0.5 of phosphoenol pyruvate (PEP) for L-PK was decreased in a time-dependent manner from 1 +/- 0.08 to 0.64 +/- 0.1 mM (P less than 0.01) and 0.58 +/- 0.06 mM in liver cells. This shift was prevented only by the addition of glucagon to the perfusion medium. The extent of phosphorylation of L-PK was also estimated by incubation of the liver extract with [gamma-32P]ATP, protein kinase, and cyclic AMP, and measurement of 32Pi incorporated in L-PK by specific immunoprecipitation. In liver extracts removed at the beginning of the perfusion, 0.4 mol Pi/mol L-PK was incorporated and there was no stimulation by cyclic AMP. In contrast, in the liver extracts removed after 30 min of perfusion, cyclic AMP stimulated 32P incorporation two to threefold, and 1.6 mol Pi/mol L-PK was incorporated. These data suggest that L-PK was activated by a dephosphorylation mechanism during rat liver perfusion. This phenomenon could be involved in the classical inactivation of gluconeogenesis observed in the perfused rat liver model.  相似文献   

7.
Activation of Ca2+-calmodulin- and cyclic AMP-dependent protein kinases has been suggested to be involved in stimulus-secretion coupling in the pancreatic β-cell. To study the properties of such kinases and their endogenous protein substrates homogenates of rat islets of Langerhans were incubated with [γ-32P]ATP. Phosphorylated proteins were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and detected by autoradiography. The phosphorylation of certain proteins could be enhanced by Ca2+ plus calmodulin or by cyclic AMP. The major effect of Ca2+ and calmodulin was to stimulate the phosphorylation of a protein (P53) of molecular weight 53 100±500 (n = 15). Maximum phosphorylation of protein P53 occurred within 2 min with 2 μM free Ca2+ and 0.7 μM calmodulin. Incorporation of label into protein P53 was inhibited by trifluoperazine or W7 but not by cyclic AMP-dependent protein kinase inhibitor. Phosphorylation of a protein of similar molecular weight could be enhanced to a lesser extent in the absence of Ca2+ but in the presence of cyclic AMP and 3-isobutylmethylxanthine: this phosphorylation was blocked by cyclic AMP-dependent protein kinase inhibitor. Cyclic AMP also stimulated incorporation of label into polypeptides of molecular weights 55 000 and 70–80 000. The results are consistent with the hypothesis that protein phosphorylation mechanisms may play a role in the regulation of insulin secretion.  相似文献   

8.
Secretagogue-induced protein phosphorylation was studied in the mouse pancreas in vitro, by using polyacrylamide-gel electrophoresis to separate the labelled proteins. Muscarinic cholinergic agonists increased the phosphorylation of a single band, which corresponded to Mr 32000, when the tissue was incubated with Ca2+ present in the extracellular medium, but not in Ca2+-free Krebs solution. In the presence of Ca2+, ionophore A23187 stimulated phosphorylation of the same band. The dose-response curve for carbachol-induced phosphorylation was biphasic, with maximum response at 1.0 microM-carbachol, and lesser responses when greater concentrations were used. This resembles the dose-response curve for carbachol-induced amylase secretion. The data suggest that the muscarinic-agonist-induced protein phosphorylation is stimulated secondarily to elevation of cytosol [Ca2+] and do not support the idea that diacylglycerol formed from hydrolysis of phosphatidylinositol is the activator of the protein kinase. Derivatives of cyclic AMP stimulated phosphorylation of bands corresponding to Mr 95500, 32000 and 20000. The effects of dibutyryl cyclic AMP and bethanechol on the protein of Mr 32000 were not additive, suggesting that the two agents produced phosphorylation of the same site(s) on this protein. Since derivatives of cyclic AMP, which are not very effective secretagogues in the exocrine pancreas, stimulate phosphorylation of the protein of Mr 32000, it is difficult to argue that phosphorylation of this particular protein leads to protein secretion.  相似文献   

9.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weights between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [gamma-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [gamma-32P]ATP and cyclic AMP-dependent protein kinase from calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

10.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

11.
Phosphorylation of fibrinogen by casein kinase 1   总被引:3,自引:0,他引:3  
Casein kinase 1 phosphorylated human fibrinogen, in a reaction that did not use GTP as phosphoryl donor and was neither stimulated by cyclic AMP or Ca2+, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. Maximal incorporation averaged 4 mol of phosphate per mol of fibrinogen, most of it in the largest CNBr-fragment of the alpha-chain. Phosphoamino acid analysis revealed that phosphorylation occurred only at seryl residues. The phosphorylation of fibrinogen by casein kinase 1 was reverted by alkaline phosphatase.  相似文献   

12.
Suspensions of renal cortical tubules were incubated with 33Pi and exposed to parathyroid hormone (40 mlg/ml) or 1 mM dibutyryl cyclic AMP. In other experiments homogenates of renal cortex were assayed for protein kinase and phosphoprotein phosphatase activity using [gamma-32P]ATP with or without 5 mM cyclic AMP. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphorylation of proteins measured by liquid scintillation counting of gel slices. The pattern of protein phosphorylation was similar in control tissue from both tubule suspensions and homogenates. In intact tubules, parathyroid hormone stimulated the phosphorylation of four proteins with molecular weights of approx. 150 000, 125 000, 100 000 and 50 000 by 28%, 24%, 13%, and 20%, respectively. Results with dibutyryl cyclic AMP were comparable but more variable. Stimulation of phosphorylation by cyclic AMP in homogenates was more generalized with the major effect on a 50 000 dalton protein (50% stimulation). No effect of cyclic AMP on dephosphorylation of proteins was observed. The results are interpreted as indicating that increased phosphorylation of cell proteins is part of the cyclic AMP-mediated response of the renal cortex to parathyroid hormone.  相似文献   

13.
The phosphorylation of microtubular proteins isolated by reassembly in vitro from slices of guinea-pig cerebral cortex labelled with [32P]orthophosphate was investigated. Under the conditions tested, both and the alpha and beta forms of tubulin contained metabolically-active P which accounted for about one third of the total 32P incorporated into protein; the remaining protein-bound 32P was associated with 3-4 minor high MW components co-purifying with tubulin during two cycles of assembly-disassembly. Microtubular protein prepared in this way contained approx. 0.8 mol of alkalilabile P/mol of tubulin dimer (M.W. 110,000). In vitro studies showed that reassembled microtubular protein preparations catalysed the incorporation of up to 0.55 mol of P/mol of tubulin dimer during incubation with Mg2+ and [gamma 32P]ATP. The reaction was linear during the first 30 min of incubation at 37 degrees C. Cyclic AMP (10 microM, final concentration) caused a transient increase in the initial rates of tubulin phosphorylation. Little label was incorporated into the minor high M.W. components under these conditions. The in vitro phosphorylation of microtubular protein increased in a non-linear manner with respect to protein concentration: this was in contrast to earlier experiments showing linear kinetics when chromatographically isolated tubulin was tested for intrinsic kinase activity. Isolated microtubular protein preparations bound [3H]GTP, [3H]ATP and to a lesser extent, [3H]cyclic AMP, and exhibited Ca(2+)-ATPase activity (up to 60 pmol Pi released min/mg protein at 37 degrees C).  相似文献   

14.
The effects of adenosine 3′ : 5′-monophosphate (cyclic AMP), guanosine 3′ : 5′-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P).While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10?5 M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP.Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10?8 M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10?8 M, while with cyclic AMP a concentration of 10?5 M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P.These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

15.
Calcium ion-stimulated phosphorylation of myelin proteins.   总被引:5,自引:3,他引:2       下载免费PDF全文
Myelin isolated from the central and peripheral nervous system contains a Mg2+-dependent protein kinase that catalyses phosphorylation of myelin-specific proteins. This phosphorylation is markedly stimulated by Ca2+ but not by cyclic AMP. Evidence was obtained that suggested an involvement of calmodulin-like protein in the stimulatory effects of Ca2+ on myelin phosphorylation.  相似文献   

16.
Brain and liver cytosol extracts from mice of different ages were incubated with (γ-32P)ATP. The phosphorylated substrates were separated by gel electrophoresis and examined by autoradiography. The amount of P32 that could be incorporated into a 49,000 M.W. protein (called protein 49) postnatally increased in brain but decreased in liver. Cyclic AMP stimulated both the phosphorylation and dephosphorylation of liver protein 49 to a greater extent in adults than in neonates. Brain protein 49 phosphorylation was more sensitive to cyclic AMP in neonates than in adults.  相似文献   

17.
The effects of cyclic AMP on the phosphorylation of different acidic proteins of rat liver nuclei were examined in vivo and in vitro. N6,O2′-dibutyryl cyclic AMP selectively stimulated in vivo phosphorylation of specific nuclear proteins more than twofold within 15 min after injection. Cyclic AMP caused only a small stimulation of phosphorylation of acidic proteins in isolated nuclei but the stimulation was selective for specific proteins. When isolated nuclear acidic proteins were incubated with a soluble cyclic AMP-dependent protein kinase, the cyclic nucleotide stimulated total phosphorylation about 1.7-fold. These results support the view that the regulatory effects of cyclic AMP may involve phosphorylation of acidic proteins associated with DNA in the chromatin.  相似文献   

18.
When the homogenate of rabbit superior cervical ganglia (SCG) was incubated in the presence of [gamma-32P]ATP and Mg2+, two specific proteins were strongly labeled. Their apparent molecular weights were 90,000 and 54,000, respectively. The phosphorylation of the latter was significantly stimulated by 10-50 nM cyclic GMP but to a lesser extent by cyclic AMP, whereas that of the former was not stimulated significantly by either of the cyclic nucleotides. The purified protein kinase inhibitor from rabbit skeletal muscle did not inhibit the phosphorylation. These results indicated that the observed phosphorylation of 54K protein was dependent on cyclic GMP but not on cyclic AMP. When intact SCG was incubated in the presence of 32Pi, phosphorylation of 90K protein was stimulated by cyclic GMP, dibutyryl cyclic GMP, and 8-bromo-cyclic GMP (10 microM), whereas phosphorylation of 54K protein was not significantly stimulated by any of these substances. The present demonstration of endogenous cyclic GMP-dependent protein kinase activity and its endogenous substrate proteins raises a possibility that the physiological actions of cyclic GMP in SCG are mediated by the phosphorylation of these proteins.  相似文献   

19.
Suspensions of renal cortical tubules were incubated with 33Pi and exposed to parathyroid hormone (40 μg/ml) or 1 mM dibutyryl cyclic AMP. In other experiments homogenates of renal cortex were assayed for protein kinase and phosphoprotein phosphatase activity using [γ-32P]ATP with or without 5 mM cyclic AMP. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphorylation of proteins measured by liquid scintillation counting of gel slices. The pattern of protein phosphorylation was similar in control tissue from both tubule suspensions and homogenates. In intact tubules, parathyroid hormone stimulated the phosphorylation of four proteins with molecular weights of approx. 1500 000, 125 000, 100 000 and 50 000 by 28%, 24%, 13%, and 20%, respectively. Results with dibutyryl cyclic AMP were comparable but more variable. Stimulation of phosphorylation by cyclic AMP in homogenates was more generalized with the major effect on a 50 000 dalton protein (50% stimulation). No effect of cyclic AMP on dephosphorylation of proteins was observed. The results are interpreted as indicating that increased phosphorylation of cell proteins is part of the cyclic AMP-mediated response of the renal cortex to parathyroid hormone.  相似文献   

20.
The changes in the activities of 17 aminoacyl-tRNA synthetases induced by phosphorylation [1] were reversed by the action of cyclic AMP in preparations from both uterus and liver. Cyclic AMP also inhibited the phosphorylation of aminoacyl-tRNA synthetase protein by endogenous non-cyclic AMP-dependent protein kinase and [gamma-32P]ATP. The effect was not due to a stimulation of phosphoaminoacyl-tRNA synthetase phosphatase or to an influence of cyclic AMP on aminoacyl-tRNA synthetases. The activity of phosphoaminoacyl-tRNA synthetase phosphatase was increased by treatment with endogenous cyclic AMP-dependent protein kinase, ATP and cyclic AMP. Affinity chromatography of the 32P-labeled phosphorylated phosphosynthetase phosphatase protein followed by gel electrophoresis showed that the activated phosphatase was phosphorylated. In the uterus, the changes in 17 aminoacyl-tRNA synthetase activities observed 5 min after dibutyryl cyclic AMP administration to ovariectomized mice were similar to those observed after 17beta-oestradiol treatment, whereas in the liver the changes in these activities were the opposite to those found after treatment with 17beta-oestradiol. A mechanism for the regulation of the 17 aminoacyl-tRNA synthetase activities is proposed, which suggests that the synthetase activities inhibited (group I) or stimulated (group II) by phosphorylation with a non-cyclic AMP-dependent aminoacyl-tRNA synthetase kinase are reactivated (group I) or inhibited (group II), respectively, by the action of a cyclic AMP-dependent phosphatase kinase through the increased activity of phosphorylated phosphoaminoacyl-tRNA synthetase phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号