首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH) in rats.

Methods

CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i) the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii) the anti-remodeling effect of long-term inhalation of tolafentrine (iii) the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated.

Results

Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks), cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC) was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP) 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers), after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery muscularization. The upregulation of extracellular matrix regulation and adhesion genes was reduced by nearly 80% by inhalation of the tolafentrine. When assessed in vitro, tolafentrine blocked the enhanced PASMC migratory response.

Conclusion

In conclusion, we demonstrate for the first time that inhalation of combined PDE3/4 inhibitor reverses pulmonary hypertension fully developed in response to monocrotaline in rats. This "reverse-remodeling" effect includes structural changes in the lung vascular wall and key molecular pathways of matrix regulation, concomitant with 60% normalization of hemodynamics.  相似文献   

2.
The administration of mesenchymal stem cells (MSCs) has been proposed for the treatment of pulmonary hypertension. However, the effect of intratracheally administered MSCs on the pulmonary vascular bed in monocrotaline-treated rats has not been determined. In the present study, the effect of intratracheal administration of rat MSCs (rMSCs) on monocrotaline-induced pulmonary hypertension and impaired endothelium-dependent responses were investigated in the rat. Intravenous injection of monocrotaline increased pulmonary arterial pressure and vascular resistance and decreased pulmonary vascular responses to acetylcholine without altering responses to sodium nitroprusside and without altering systemic responses to the vasodilator agents when responses were evaluated at 5 wk. The intratracheal injection of 3 x 10(6) rMSCs 2 wk after administration of monocrotaline attenuated the rise in pulmonary arterial pressure and pulmonary vascular resistance and restored pulmonary responses to acetylcholine toward values measured in control rats. Treatment with rMSCs decreased the right ventricular hypertrophy induced by monocrotaline. Immunohistochemical studies showed widespread distribution of lacZ-labeled rMSCs in lung parenchyma surrounding airways in monocrotaline-treated rats. Immunofluorescence studies revealed that transplanted rMSCs retained expression of von Willebrand factor and smooth muscle actin markers specific for endothelial and smooth muscle phenotypes. However, immunolabeled cells were not detected in the wall of pulmonary vessels. These data suggest that the decrease in pulmonary vascular resistance and improvement in response to acetylcholine an endothelium-dependent vasodilator in monocrotaline-treated rats may result from a paracrine effect of the transplanted rMSCs in lung parenchyma, which improves vascular endothelial function in the monocrotaline-injured lung.  相似文献   

3.
经典瞬时感受器电位通道6(transient receptor potential channel6,TRPC6)蛋白是受体操纵性Ca2+通道(ROCC)的分子基础。本文旨在研究TRPC6/ROCC在野百合碱(monocrotaline,MCT)诱发的肺动脉高压大鼠模型中的作用。Sprague-Dawley大鼠随机分为正常对照组(CON组)和MCT组,CON组正常饲养三周,而MCT组按60mg/kg剂量一次性腹腔注射2%MCT,建立MCT诱导的慢性肺动脉高压大鼠模型。通过测定右心室收缩压(RVSP)和右心室重量指数(RVMI)、HE染色观察肺动脉血管形态,分析肺动脉结构重建。半定量RT-PCR和Western blot检测大鼠肺动脉TRPC6 mRNA和蛋白表达水平。血管张力实验中用可特异性激活ROCC、可透膜的DAG拟似物1-oleoyl-2-acetyl-sn-glycerol(OAG)检测大鼠离体肺动脉环的收缩效应。用荧光探针Fluo3-AM测定OAG诱导大鼠肺动脉平滑肌细胞(PASMCs)胞浆游离Ca2+浓度([Ca2+]i)。结果显示,与CON组相比,MCT组的RVSP、RVMI均明显增高(P0.01);形态学观察可见肺小动脉平滑肌层明显增厚,管腔减小;TRPC6的mRNA和蛋白质表达无明显变化。在CON组,OAG几乎不引起肺动脉环收缩,而在MCT组,肺动脉环的收缩反应显著增强,差别有显著性意义(P0.01)。相比较于CON组,MCT也可使OAG触发的PASMCs[Ca2+]i增量值显著升高(P0.05)。上述结果提示,MCT预处理对肺动脉TRPC6mRNA和蛋白质水平的表达无显著增强效应,但可促进TRPC6/ROCC介导的PASMCsCa2+内流和肺动脉张力升高,诱导大鼠产生肺动脉高压,并进一步诱发肺血管及右心室重构。  相似文献   

4.
5.
Chronic alveolar hypoxia induces vascular remodeling processes in the lung resulting in pulmonary hypertension (PH). However, the mechanisms underlying pulmonary remodeling processes are not fully resolved yet. To investigate functional changes occurring during hypoxia exposure we applied 2DE to compare protein expression in lungs from mice subjected to 3 h of alveolar hypoxia and those kept under normoxic conditions. Already after this short‐time period several proteins were significantly regulated. Subsequent analysis by MALDI‐MS identified cofilin as one of the most prominently upregulated proteins. The regulation was confirmed by western blotting and its cellular localization was determined by immunohisto‐ and immunocytochemistry. Interestingly, enhanced cofilin serine 3 phosphorylation was observed after short‐term and after chronic hypoxia‐induced PH in mice, in pulmonary arterial smooth muscle cells (PASMC) from monocrotaline‐induced PH in rats, in lungs of idiopathic pulmonary arterial hypertension patients and in hypoxic or platelet‐derived growth factor BB‐treated human PASMC. Furthermore, elevated cofilin phosphorylation was attenuated by curative treatment of monocrotaline‐induced PH in rats and hypoxia‐induced PH in mice with the PDGF‐BB receptor antagonist imatinib. In conclusion, short‐term hypoxic exposure induced prominent changes in lung protein regulation. These very early changes allowed us to identify potential triggers of PH. Thus, respective 2DE analysis can lead to the identification of new target proteins for the possible treatment of PH.  相似文献   

6.
Cold-inducible RNA-binding protein (CIRP) was a crucial regulator in multiple diseases. However, its role in pulmonary artery hypertension (PAH) is still unknown. Here, we first established monocrotaline (MCT)-induced rat PAH model and discovered that CIRP was down-regulated predominantly in the endothelium of pulmonary artery after MCT injection. We then generated Cirp-knockout (Cirp-KO) rats, which manifested severer PAH with exacerbated endothelium damage in response to MCT. Subsequently, Caveolin1 (Cav1) and Cavin1 were identified as downstream targets of CIRP in MCT-induced PAH, and the decreased expression of these two genes aggravated the injury and apoptosis of pulmonary artery endothelium. Moreover, CIRP deficiency intensified monocrotaline pyrrole (MCTP)-induced rat pulmonary artery endothelial cells (rPAECs) injuries both in vivo and in vitro, which was counteracted by Cav1 or Cavin1 overexpression. In addition, CIRP regulated the proliferative effect of conditioned media from MCTP-treated rPAECs on rat pulmonary artery smooth muscle cells, which partially explained the exceedingly thickened pulmonary artery intimal media in Cirp-KO rats after MCT treatment. These results demonstrated that CIRP acts as a critical protective factor in MCT-induced rat PAH by directly regulating CAV1 and CAVIN1 expression, which may facilitate the development of new therapeutic targets for the intervention of PAH.  相似文献   

7.
Dexfenfluramine (Dex), an appetite suppressant and serotonin reuptake inhibitor, is associated with pulmonary vascular disease (PVD) in some patients. The variability might be related to undetermined genetic abnormalities interacting with factors such as gender, weight loss, and vascular injury. We, therefore, assessed the effect of Dex (5 mg. kg(-1). day(-1)) in female obese rats, designated JCR:LA-cp or cp/cp; in lean rats, designated (+/?); and in normal Sprague-Dawley (S-D) rats under control conditions or after endothelial injury induced by monocrotaline (60 mg/kg). Pulmonary arterial pressure, right ventricular hypertrophy, percent medial wall thickness of muscular arteries, and muscularization of peripheral arteries were assessed as indexes of PVD. Although Dex reduced weight gain in cp/cp and S-D rats (P < 0.05 for both), it did not cause PVD. Moreover, PVD in S-D rats after monocrotaline injection was paradoxically ameliorated by Dex (P < 0.05) despite induction of pulmonary artery elastase (P < 0.05), which we showed is critical in inducing experimental PVD. Thus it is possible that Dex is concomitantly offsetting the sequelae of elastase activity.  相似文献   

8.
Given the therapeutic efficacy of fasudil hydrochloride (F) and dichloroacetate (DCA) on pulmonary arterial hypertension (PAH), a new salt fasudil dichloroacetate (FDCA) was designed, synthesized and biologically evaluated. FDCA exhibited comparable ROCK II inhibitory activity relative to fasudil hydrochloride, and suppressed the expression of TNF-α and IL-6 in both PDGF-BB and hypoxia-treated pulmonary arterial smooth muscle cells (PASMCs) and endothelial cells (PAECs). Significantly, FDCA lowered mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), and decreased right ventricular hypertrophy (RVH) in monocrotaline (MCT)-induced PAH rats. Meanwhile, FDCA remarkably decreased pulmonary artery medial thickness (PAMT) and hyperplasia, restoring the elasticity of elastic fiber, reduced cardiac hypertrophy, and attenuated fibrosis of heart and lung. Collectively, FDCA exhibited triple activities of pulmonary vasodilation, vascular remodeling inhibition and RVH inhibition, suggesting that it may be a promising agent for PAH intervention.  相似文献   

9.

Background

Pulmonary hypertension (PH) is a progressive disorder characterized by an increase in pulmonary artery pressure and structural changes in the pulmonary vasculature. Several observations indicate that growth factors play a key role in PH by modulating pulmonary artery smooth muscle cell (PA-SMC) function. In rats, established monocrotaline-induced PH (MCT-PH) can be reversed by blocking platelet-derived growth factor receptors (PDGF-R), epidermal growth factor receptors (EGF-R), or fibroblast growth factor receptors (FGF-R). All these receptors belong to the receptor tyrosine kinase (RTK) family.

Methods and Results

We evaluated whether RTK blockade by the nonspecific growth factor inhibitor, suramin, reversed advanced MCT-PH in rats via its effects on growth-factor signaling pathways. We found that suramin inhibited RTK and ERK1/2 phosphorylation in cultured human PA-SMCs. Suramin inhibited PA-SMC proliferation induced by serum, PDGF, FGF2, or EGF in vitro and ex vivo. Treatment with suramin from day 1 to day 21 after monocrotaline injection attenuated PH development, as shown by lower values for pulmonary artery pressure, right ventricular hypertrophy, and distal vessel muscularization on day 21 compared to control rats. Treatment with suramin from day 21 to day 42 after monocrotaline injection reversed established PH, thereby normalizing the pulmonary artery pressure values and vessel structure. Suramin treatment suppressed PA-SMC proliferation and attenuated both the inflammatory response and the deposition of collagen.

Conclusions

RTK blockade by suramin can prevent MCT-PH and reverse established MCT-PH in rats. This study suggests that an anti-RTK strategy that targets multiple RTKs could be useful in the treatment of pulmonary hypertension.  相似文献   

10.
Serum depletion induces cell death. Whereas serum contains growth factors and adhesion molecules that are important for survival, serum is also likely to have antiapoptotic factor(s). We show here that the plasma proteinase inhibitors alpha1-proteinase inhibitor, alpha1-antichymotrypsin, and alpha2-macroglobulin function as critical antiapoptotic factors for human vascular smooth muscle cells. Cell survival was assured when serum-free medium was supplemented with any one or all of the above serine proteinase inhibitors. In contrast, the cells were sensitive to apoptosis when cultured in medium containing serum from which the proteinase inhibitors were removed. The antiapoptotic effect conferred by the proteinase inhibitors was proportional to proteinase inhibitory activity. Without proteinase inhibitors, the extracellular matrix was degraded, and cells could not attach to the matrix. Cell survival was dependent on the intact extracellular matrix. In the presence of the caspase inhibitor z-VAD, the cells detached but did not die. The activity of caspases was elevated without proteinase inhibitors; in contrast, caspases were not activated when medium was supplemented with one of the proteinase inhibitors. In conclusion, the plasma proteinase inhibitors prevent degradation of extracellular matrix by proteinases derived from cells. Presumably an intact cell-matrix interaction inhibits caspase activation and supports cell survival.  相似文献   

11.
Zhang L  Ma J  Shen T  Wang S  Ma C  Liu Y  Ran Y  Wang L  Liu L  Zhu D 《Cellular signalling》2012,24(10):1931-1939
15-lipoxygenase (15-LO) is known to play an important role in chronic pulmonary hypertension. Accumulating evidence for its down-stream participants in the vasoconstriction and remodeling processes of pulmonary arteries, while how hypoxia regulates 15-LO/15-hydroxyeicosatetraenoic acid (15-HETE) to mediate hypoxic pulmonary hypertension is still unknown. Platelet-derived growth factor (PDGF) is an important vascular regulator whose concentration increases under hypoxic condition in the lungs of both humans and mice with pulmonary hypertension. The present study was carried out to determine whether hypoxia advances the pulmonary vascular remodeling through the PDGF/15-LO/15-HETE pathway. We found that pulmonary arterial medial thickening caused by hypoxia was alleviated after a treatment of the hypoxic rats with imatinib, which was associated with down-regulations of 15-LO-2 expression and 15-HETE production. Moreover, the increases in cell proliferation and endogenous 15-HETE content by hypoxia were attenuated by the inhibitors of PDGF-β receptor in pulmonary artery smooth muscle cells (PASMCs). The effects of PDGF-BB on cell proliferation and survival were weakened after the administration of 15-LO inhibitors or 15-LO RNA interference. These results suggest that hypoxia promotes PASMCs proliferation and survival, contributing to pulmonary vascular medial hypertrophy, which is likely to be mediated via the PDGF-BB/15-LO-2/15-HETE pathway.  相似文献   

12.
It has been reported that probucol is a lipid-lowering agent having a strong antioxidative effect and inhibitory action on vascular smooth muscle cell proliferation. In this work, we studied the effect of treatment with a 1% probucol diet on pulmonary hypertension induced by monocrotaline (MCT) in rats. Rats were fed a control or 1% probucol-supplemented diet for 7 days, then given a single subcutaneous injection of 60 mg/kg MCT or saline, and continuously fed the same diet for 20 days, respectively. MCT caused an increase in right ventricular systolic pressure (RVSP), an indicator of pulmonary hypertension, and central venous pressure (CVP) on day 20. In rats receiving a diet containing 1% probucol, RVSP was significantly lower than that in rats treated with control diet, and CVP remained essentially at the basal level. On day 20, MCT also caused an increase in the ratio of right ventricular (RV) to body weight (BW), compared to the control value, indicating the development of RV hypertrophy in MCT rats. RV hypertrophy was significantly inhibited in 1% probucol-treated rats. These findings suggest that chronic treatment with probucol effectively inhibits the progression of pulmonary hypertension in rats.  相似文献   

13.
The selective serotonin re-uptake inhibitor fluoxetine has been shown to protect against monocrotaline (MCT)-induced pulmonary hypertension in rats. To investigate the possible role of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in mediating this protective effect, MCT-treated rats were administered fluoxetine by gavage, at doses of 2?mg/kg body mass or 10?mg/kg once daily for 3 weeks. Changes in pulmonary hemodynamic parameters, pulmonary artery morphologies, and expressions of HIF-1α and VEGF were assessed. Fluoxetine at the 10?mg/kg dose, but not at the 2?mg/kg dose, attenuated the effects of MCT on pulmonary artery pressure, right ventricle index, and medial wall thickness. In addition, 10?mg/kg fluoxetine mitigated the MCT-induced up-regulation of HIF-1α and VEGF protein and reactive oxygen species (ROS) in the lungs. This dosage also decreased pERK1/2 levels and inhibited proliferation of pulmonary arterial smooth muscle cells in MCT-treated rats. In conclusion, fluoxetine can protect against MCT-induced pulmonary arterial remodeling, which linked to reduced ROS generation and decreased HIF-1α and VEGF protein levels via the ERK1/2 phosphorylation pathway.  相似文献   

14.
目的:观察低氧高二氧化碳性肺动脉高压大鼠的肺血管重塑并探讨内质网应激(ERS)在肺动脉高压中的作用。方法:将40只SD大鼠随机分为四组:常氧对照组(N)、低氧高二氧化碳组(HH)、ERS通路抑制剂4-苯基丁酸(4-phenylbutyric acid)组(4-PBA)、ERS通路激动剂衣霉素(tunicamycin)组(TM),n=10。测量各组大鼠的肺动脉平均压(mPAP)、颈动脉平均压以及右心室肥大指数,免疫荧光α-SMA标记法鉴定各组肺中小动脉平滑肌细胞,电镜观察肺组织及肺中小动脉形态学变化,原位末端标记法(TUNEL)检测各组肺动脉平滑肌细胞的凋亡指数,采用RT-PCR和Western blot分别检测各组大鼠葡萄糖调节蛋白78(GRP78)、C/EBP同源蛋白(CHOP)、c-Jun氨基末端激酶(JNK)、天冬氨酸特异性半胱氨酸蛋白酶-12(caspase-12)mRNA及蛋白质表达。结果:①与N组相比,HH组、4-PBA组、TM组mPAP、右心室游离壁重量/左心室加心室间隔重量[RV/(LV+S)]、肺动脉管壁面积/管总面积(WA/TA)比值增加(P<0.0 1),肺动脉管腔面积/管总面积(LA/TA)比值减小(P<0.01),细胞凋亡指数降低(P <0.05或P<0.01)。ERS相关蛋白质及mRNA的表达量升高,各差异均有统计学意义。②与HH组相比,4-PB A组mPAP和[RV/(LV+S)]、WA/TA值减小(P<0.01),LA/TA值和细胞凋亡指数上升(P<0.05或P<0.01),ERS相关蛋白质和mRNA的表达量均下调(P<0.05或P<0.01);③与HH组相比,TM组mPAP、[RV/(LV+S)]、WA/TA值升高(P<0.05或P<0.01);肺动脉中膜层增厚,LA/TA值和细胞凋亡指数降低(P<0.01)。ERS相关蛋白质及mRNA的表达量均升高,除GRP78蛋白质表达量无明显变化外,其余各差异均有统计学意义。结论:低氧高二氧化碳诱导的肺动脉高压大鼠肺血管重塑可能与肺动脉平滑肌细胞增殖过度及凋亡过少有关;ERS相关因子(JNK、caspase-12和CHOP)参与低氧高二氧化碳性肺动脉高压的调控。  相似文献   

15.
目的:探讨苹果多酚抑制肺动脉高压大鼠肺动脉血管重构的作用及其机制。方法:雄性SD大鼠随机分为对照组(Con),野百合碱(MCT)组,苹果多酚(APP)组,野百合碱+苹果多酚(MCT+APP)组,每组9只。Con组:每天皮下注射1ml生理盐水;APP组:隔天按20mg/kg的剂量腹腔注射苹果多酚;MCT组:按60mg/kg剂量一次性皮下注射MCT;MCT+APP组:一次性皮下注射60mg/kg剂量MCT,隔天按20mg/kg剂量腹腔注射APP,所有处理持续3周。建模完成后,检测各组大鼠平均肺动脉压(mPAP),肺血管阻力(PVR),右心室肥厚指数(RVHI),肺动脉血管环外周长比值(WT%),肺小血管管壁面积和管总面积比值(WA%)。检测肺组织中的白细胞介素1(IL-1),白细胞介素6(IL-6),肿瘤坏死因子α(TNF-α),环氧化酶2(COX-2),髓过氧化物酶(MPO)等炎症通路相关指标,及肺动脉平滑肌细胞内Ca2+和内皮细胞eNOS,NO含量。结果:MCT组大鼠与对照组比较,在动物水平的指标mPAP、PVR、RVHI、WA%、WT%和肺动脉组织内IL-1,IL-6,TNF-α,COX-2,MPO表达量以及肺动脉平滑肌细胞内的Ca2+浓度明显升高(P<0.05),而内皮细胞中的eNOS,NO含量明显下降(P<0.05);苹果多酚治疗组与MCT组大鼠相比上述情况得到改善,其中COX-2和Ca2+指标明显下降,且具有统计学意义(P<0.05)。结论:苹果多酚可通过抑制MCT引起的肺组织内IL-1,IL-6,TNF-α,COX-2升高和肺动脉平滑肌细胞内Ca2+升高以及内皮细胞中eNOS,NO降低,抑制平滑肌细胞增殖,逆转肺血管重构,缓解肺动脉高压。  相似文献   

16.
Thiazolidinediones (TZDs) are insulin-sensitizing agents that also decrease systemic blood pressure, attenuate the formation of atherosclerotic lesions, and block remodeling of injured arterial walls. Recently, TZDs were shown to prevent pulmonary arterial (PA) remodeling in rats treated with monocrotaline. Presently we report studies testing the ability of the TZD rosiglitazone (ROSI) to attenuate pathological arterial remodeling in the lung and prevent the development of pulmonary hypertension (PH) in rats subjected to chronic hypoxia. PA remodeling was reduced in ROSI-treated animals exposed to hypoxia compared with animals exposed to hypoxia alone. ROSI treatment blocked muscularization of distal pulmonary arterioles and reversed remodeling and neomuscularization in lungs of animals previously exposed to chronic hypoxia. Decreased PA remodeling in ROSI-treated animals was associated with decreased smooth muscle cell proliferation, decreased collagen and elastin deposition, and increased matrix metalloproteinase-2 activity in the PA wall. Cells expressing the c-Kit cell surface marker were observed in the PA adventitia of untreated animals exposed to hypoxia but not in ROSI-treated hypoxic rats. Right ventricular hypertrophy and cardiomyocyte hypertrophy were also blunted in ROSI-treated hypoxic animals. Interestingly, mean PA pressures were elevated equally in the untreated and ROSI-treated groups, indicating that ROSI had no effect on the development of PH. However, mean PA pressure was normalized acutely in both groups of hypoxia-exposed animals by Fasudil, an agent that inhibits RhoA/Rho kinase-mediated vasoconstriction. We conclude that ROSI can attenuate and reverse PA remodeling and neomuscularization associated with hypoxic PH. However, this agent fails to block the development of PH, apparently because of its inability to repress sustained Rho kinase-mediated arterial vasoconstriction.  相似文献   

17.
Pulmonary hypertension is a progressive disease characterized by marked pulmonary arterial remodeling and increased vascular resistance. Inflammation and oxidative stress promote the development of pulmonary hypertension. Oxymatrine, one of the main active components of the Chinese herb Sophora flavescens Ait. (Kushen), plays anti-inflammatory and antioxidant protective roles, which effects on pulmonary arteries remain unclear. This study aimed to investigate the effects of oxymatrine on pulmonary hypertension development. Sprague–Dawley rats were exposed to hypoxia for 28 days or injected with monocrotaline, to develop pulmonary hypertension, along with administration of oxymatrine (50 mg/kg/day). Hemodynamics and pulmonary arterial remodeling data from the rats were then obtained. The antiproliferative effect of oxymatrine was verified by in vitro assays. The inflammatory cytokine mRNA levels and leukocyte and T cell accumulation in lung tissue were detected. The antioxidative effects of oxymatrine were explored in vitro. Our study shows that oxymatrine treatment attenuated right-ventricular systolic pressure and pulmonary arterial remodeling induced by hypoxia or monocrotaline and inhibited proliferation of pulmonary arterial smooth muscle cells (PASMCs). Increased expression of inflammatory cytokine mRNA and accumulation of leukocytes and T cells around the pulmonary arteries were suppressed with oxymatrine administration. Under hypoxic conditions, oxymatrine significantly upregulated Nrf2 and antioxidant protein SOD1 and HO-1 expression, but downregulated hydroperoxide levels in PASMCs. In summary, this study indicates that oxymatrine may prevent pulmonary hypertension through its antiproliferative, anti-inflammatory, and antioxidant effects, thus providing a promising pharmacological avenue for treating pulmonary hypertension.  相似文献   

18.
The excessive proliferation and migration of vascular smooth muscle cells (VSMCs) are mainly responsible for vascular occlusion diseases, such as pulmonary arterial hypertension and restenosis. Our previous study demonstrated thymoquinone (TQ) attenuated monocrotaline‐induced pulmonary arterial hypertension. The aim of the present study is to systematically examine inhibitory effects of TQ on platelet‐derived growth factor‐BB (PDGF‐BB)–induced proliferation and migration of VSMCs in vitro and neointimal formation in vivo and elucidate the potential mechanisms. Vascular smooth muscle cells were isolated from the aorta in rats. Cell viability and proliferation were measured in VSMCs using the MTT assay. Cell migration was detected by wound healing assay and Transwell assay. Alpha‐smooth muscle actin (α‐SMA) and Ki‐67‐positive cells were examined by immunofluorescence staining. Reactive oxygen species (ROS) generation and apoptosis were measured by flow cytometry and terminal deoxyribonucleotide transferase–mediated dUTP nick end labelling (TUNEL) staining, respectively. Molecules including the mitochondria‐dependent apoptosis factors, matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), PTEN/AKT and mitogen‐activated protein kinases (MAPKs) were determined by Western blot. Neointimal formation was induced by ligation in male Sprague Dawley rats and evaluated by HE staining. Thymoquinone inhibited PDGF‐BB–induced VSMC proliferation and the increase in α‐SMA and Ki‐67‐positive cells. Thymoquinone also induced apoptosis via mitochondria‐dependent apoptosis pathway and p38MAPK. Thymoquinone blocked VSMC migration by inhibiting MMP2. Finally, TQ reversed neointimal formation induced by ligation in rats. Thus, TQ is a potential candidate for the prevention and treatment of occlusive vascular diseases.  相似文献   

19.
Chronic pulmonary hypertension in infancy and childhood is characterized by a fixed and progressive increase in pulmonary arterial pressure and resistance, pulmonary arterial remodeling, and right ventricular hypertrophy and systolic dysfunction. These abnormalities are replicated in neonatal rats chronically exposed to hypoxia from birth in which increased activity of Rho-kinase (ROCK) is critical to injury, as evidenced by preventive effects of ROCK inhibitors. Our objective in the present study was to examine the reversing effects of a late or rescue approach to treatment with a ROCK inhibitor on the pulmonary and cardiac manifestations of established chronic hypoxic pulmonary hypertension. Rat pups were exposed to air or hypoxia (13% O(2)) from postnatal day 1 and were treated with Y-27632 (15 mg/kg) or saline vehicle by twice daily subcutaneous injection commencing on day 14, for up to 7 days. Treatment with Y-27632 significantly attenuated right ventricular hypertrophy, reversed arterial wall remodeling, and completely normalized right ventricular systolic function in hypoxia-exposed animals. Reversal of arterial wall remodeling was accompanied by increased apoptosis and attenuated content of endothelin (ET)-1 and ET(A) receptors. Treatment of primary cultured juvenile rat pulmonary artery smooth muscle cells with Y-27632 attenuated serum-stimulated ROCK activity and proliferation and increased apoptosis. Smooth muscle apoptosis was also induced by short interfering RNA-mediated knockdown of ROCK-II, but not of ROCK-I. We conclude that sustained rescue treatment with a ROCK inhibitor reversed both the hemodynamic and structural abnormalities of chronic hypoxic pulmonary hypertension in juvenile rats and normalized right ventricular systolic function. Attenuated expression and activity of ET-1 and its A-type receptor on pulmonary arterial smooth muscle was a likely contributor to the stimulatory effects of ROCK inhibition on apoptosis. In addition, our data suggest that ROCK-II may be dominant in enhancing survival of pulmonary arterial smooth muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号