首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis in the domain Eucarya. The function of RFC is to load PCNA, a processivity factor of eukaryotic DNA polymerases delta and epsilon, onto primed DNA templates. RFC-like genes, arranged in tandem in the Pyrococcus furiosus genome, were cloned and expressed individually in Escherichia coli cells to determine their roles in DNA synthesis. The P. furiosus RFC (PfuRFC) consists of a small subunit (RFCS) and a large subunit (RFCL). Highly purified RFCS possesses an ATPase activity, which was stimulated up to twofold in the presence of both single-stranded DNA (ssDNA) and P. furiosus PCNA (PfuPCNA). The ATPase activity of PfuRFC itself was as strong as that of RFCS. However, in the presence of PfuPCNA and ssDNA, PfuRFC exhibited a 10-fold increase in ATPase activity under the same conditions. RFCL formed very large complexes by itself and had an extremely weak ATPase activity, which was not stimulated by PfuPCNA and DNA. The PfuRFC stimulated PfuPCNA-dependent DNA synthesis by both polymerase I and polymerase II from P. furiosus. We propose that PfuRFC is required for efficient loading of PfuPCNA and that the role of RFC in processive DNA synthesis is conserved in Archaea and Eucarya.  相似文献   

2.
Replication factor C (RFC) catalyzes the assembly of circular proliferating cell nuclear antigen (PCNA) clamps around primed DNA, enabling processive synthesis by DNA polymerase. The RFC-like genes, arranged in tandem in the Thermococcus kodakaraensis KOD1 genome, were cloned individually and co-expressed in Escherichia coli cells. T. kodakaraensis KOD1 RFC homologue (Tk-RFC) consists of the small subunit (Tk-RFCS: MW=37.2 kDa) and the large subunit (Tk-RFCL: MW=57.2 kDa). The DNA elongation rate of the family B DNA polymerase from T. kodakaraensis KOD1 (KOD DNA polymerase), which has the highest elongation rate in all thermostable DNA polymerases, was increased about 1.7 times, when T. kodakaraensis KOD1 PCNA (Tk-PCNA) and the Tk-RFC at the equal molar ratio of KOD DNA polymerase were reacted with primed DNA.  相似文献   

3.
Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. We cloned the gene encoding a PCNA homolog (PfuPCNA) from an euryarchaeote, Pyrococcus furiosus, expressed it in Escherichia coli, and characterized the biochemical properties of the gene product. The protein PfuPCNA stimulated the in vitro primer extension abilities of polymerase (Pol) I and Pol II, which are the two DNA polymerases identified in this organism to date. An immunological experiment showed that PfuPCNA interacts with both Pol I and Pol II. Pol I is a single polypeptide with a sequence similar to that of family B (alpha-like) DNA polymerases, while Pol II is a heterodimer. PfuPCNA interacted with DP2, the catalytic subunit of the heterodimeric complex. These results strongly support the idea that the PCNA homolog works as a sliding clamp of DNA polymerases in P. furiosus, and the basic mechanism for the processive DNA synthesis is conserved in the domains Bacteria, Eucarya, and Archaea. The stimulatory effect of PfuPCNA on the DNA synthesis was observed by using a circular DNA template without the clamp loader (replication factor C [RFC]) in both Pol I and Pol II reactions in contrast to the case of eukaryotic organisms, which are known to require the RFC to open the ring structure of PCNA prior to loading onto a circular DNA. Because RFC homologs have been found in the archaeal genomes, they may permit more efficient stimulation of DNA synthesis by archaeal DNA polymerases in the presence of PCNA. This is the first stage in elucidating the archaeal DNA replication mechanism.  相似文献   

4.
Replication factor C (RFC, also called activator 1), in conjunction with proliferating cell nuclear antigen (PCNA), is responsible for processive DNA synthesis catalyzed by the eukaryotic replicative DNA polymerases delta and epsilon. Here we report the isolation and characterization of homologues of RFC and PCNA from the archaeon, Methanobacterium thermoautotrophicum DeltaH. In contrast to the five subunit RFC complex isolated from eukaryotic cells, the mthRFC contains only two subunits. The two genes encoding the RFC subunits called, mthRFC1 and mthRFC3, were cloned, and the proteins (54.4 and 36.8 kDa, respectively) were overexpressed in Escherichia coli and purified individually and as a complex. The gene encoding PCNA was also cloned, and the protein was purified after overexpression in E. coli. Based on sizing column elution and subunit composition, the mthRFC complex appears to be a hexamer consisting of two mthRFC1 protomers and four mthRFC3 protomers. Although mthRFC differs in organization from its eukaryotic counterpart, it was shown to be functionally similar to eukaryotic RFC in: (i) catalyzing DNA-dependent ATP hydrolysis; (ii) binding preferentially to DNA primer ends; (iii) loading mthPCNA onto singly nicked circular DNA; and (iv) supporting mthPolB-catalyzed PCNA-dependent DNA chain elongation. The importance and roles of RFC and PCNA in M. thermoautotrophicum DeltaH replication are discussed.  相似文献   

5.
Clamp loaders from all domains of life load clamps onto DNA. The clamp tethers DNA polymerases to DNA to increase the processivity of synthesis as well as the efficiency of replication. Here, we investigated proliferating cell nuclear antigen (PCNA) binding and opening by the Saccharomyces cerevisiae clamp loader, replication factor C (RFC), and the DNA damage checkpoint clamp loader, Rad24-RFC, using two separate fluorescence intensity-based assays. Analysis of PCNA opening by RFC revealed a two-step reaction in which RFC binds PCNA before opening PCNA rather than capturing clamps that have transiently and spontaneously opened in solution. The affinity of RFC for PCNA is about an order of magnitude lower in the absence of ATP than in its presence. The affinity of Rad24-RFC for PCNA in the presence of ATP is about an order magnitude weaker than that of RFC for PCNA, similar to the RFC-PCNA interaction in the absence of ATP. Importantly, fewer open clamp loader-clamp complexes are formed when PCNA is bound by Rad24-RFC than when bound by RFC.  相似文献   

6.
Replication factor C (RF-C), a complex of five polypeptides, is essential for cell-free SV40 origin-dependent DNA replication and viability in yeast. The cDNA encoding the large subunit of human RF-C (RF-Cp145) was cloned in a Southwestern screen. Using deletion mutants of RF-Cp145 we have mapped the DNA binding domain of RF-Cp145 to amino acid residues 369-480. This domain is conserved among both prokaryotic DNA ligases and eukaryotic poly(ADP-ribose) polymerases and is absent in other subunits of RF-C. The PCNA binding domain maps to amino acid residues 481-728 and is conserved in all five subunits of RF-C. The PCNA binding domain of RF-Cp145 inhibits several functions of RF-C, such as: (i) in vitro DNA replication of SV40 origin-containing DNA; (ii) RF-C-dependent loading of PCNA onto DNA; and (iii) RF-C-dependent DNA elongation. The PCNA binding domain of RF-Cp145 localizes to the nucleus and inhibits DNA synthesis in transfected mammalian cells. In contrast, the DNA binding domain of RF-Cp145 does not inhibit DNA synthesis in vitro or in vivo. We therefore conclude that amino acid residues 481-728 of human RF-Cp145 are critical and act as a dominant negative mutant of RF-C function in DNA replication in vivo.  相似文献   

7.
An archaeal clamp loader, replication factor C (RFC), consists of two proteins, the small subunit (RFCS) and large subunit (RFCL), whose sequences are both highly homologous to those of the eukaryotic RFC components. We have investigated the oligomeric structure of RFCS from Pyrococcus furiosus by electron microscopy using single-particle analysis. RFCS forms mostly ring-shaped hexamers at pH 9.0, although it tends to form C-shaped tetramers or pentamers at a lower pH (pH 5.5). The three-dimensional (3D) structure of the RFCS hexamer was obtained by random conical tilt reconstruction at 24.0-A resolution. RFCS forms a hexameric ring with outer and inner diameters of 117 and 27 A, respectively, and with a height of about 55 A. The six subunits are arranged in a twisted manner with a sixfold symmetry around the channel. The 3D map revealed that the six subunits are arranged in a head-to-tail configuration. Although the RFC complex consists of RFCS and RFCL in vivo, RFCS alone, together with PCNA, substantially enhanced the DNA synthesizing activity of P. furiosus DNA polymerase I in vitro. The 3D reconstruction of RFCS with catalytic activity provides important insights into the organization mechanism and the functional state of the RFC complex.  相似文献   

8.
The eukaryotic sliding DNA clamp, proliferating cell nuclear antigen (PCNA), is essential for DNA replication and repair synthesis. In order to load the ring-shaped, homotrimeric PCNA onto the DNA double helix, the ATPase activity of the replication factor C (RFC) clamp loader complex is required. Although the recruitment of PCNA by RFC to DNA replication sites has well been documented, our understanding of its recruitment during DNA repair synthesis is limited. In this study, we analyzed the accumulation of endogenous and fluorescent-tagged proteins for DNA repair synthesis at the sites of DNA damage produced locally by UVA-laser micro-irradiation in HeLa cells. Accumulation kinetics and in vitro pull-down assays of the large subunit of RFC (RFC140) revealed that there are two distinct modes of recruitment of RFC to DNA damage, a simultaneous accumulation of RFC140 and PCNA caused by interaction between PCNA and the extreme N-terminus of RFC140 and a much faster accumulation of RFC140 than PCNA at the damaged site. Furthermore, RFC140 knock-down experiments showed that PCNA can accumulate at DNA damage independently of RFC. These results suggest that immediate accumulation of RFC and PCNA at DNA damage is only partly interdependent.  相似文献   

9.
Replication factor C (RFC) catalyzes the assembly of circular proliferating cell nuclear antigen (PCNA) clamps around primed DNA, enabling processive synthesis by DNA polymerase. The RFC-like genes, arranged in tandem in the Thermococcus kodakaraensis KOD1 genome, were cloned individually and co-expressed in Escherichia coli cells. T. kodakaraensis KOD1 RFC homologue (Tk-RFC) consists of the small subunit (Tk-RFCS: MW=37.2 kDa) and the large subunit (Tk-RFCL: MW=57.2 kDa). The DNA elongation rate of the family B DNA polymerase from T. kodakaraensis KOD1 (KOD DNA polymerase), which has the highest elongation rate in all thermostable DNA polymerases, was increased about 1.7 times, when T. kodakaraensis KOD1 PCNA (Tk-PCNA) and the Tk-RFC at the equal molar ratio of KOD DNA polymerase were reacted with primed DNA.  相似文献   

10.
DNA topoisomerase II (topo II) is a major nuclear protein that plays an important role in DNA metabolism. We have isolated the gene for topo II ( TOP2) from the filamentous fungus Aspergillus terreus. The deduced amino acid sequence revealed that topo II consists of 1,587 amino acids and has a calculated molecular weight of 180 kDa; the protein expressed in Escherichia coli has an estimated molecular weight of 185 kDa. Expression of topo II polypeptides tagged with yellow fluorescent protein (YFP) in budding yeast suggests that the C-terminal region of the topo II is essential for transport of the fusion protein into the nucleus. The nuclear localization signal (NLS) sequence of topo II is a non-classical bipartite type containing two interdependent, positively charged clusters separated by 15 amino acids. Alanine scanning mutagenesis and deletion analyses showed further that a stretch of 23 amino acid residues (positions 1,234-1,256) is necessary for nuclear import. In addition, we confirmed, using co-immunoprecipitation and two-hybrid analysis, that this non-classical NLS interacts with importin alpha in budding yeast. These results suggest that the fungal topo II NLS is functional in yeast cells.  相似文献   

11.
In eukaryotic DNA replication, replication factor C (RFC) acts as a "clamp loader" that loads PCNA onto a primed DNA template in an ATP-dependent manner. Proteins with functions essentially identical to that of RFC exist in Archaea. We have determined the crystal structure of the small subunit (RFCS) of Pyrococcus furiosus RFC at 2.8-A resolution. Using the information from the determined tertiary structure, we prepared several mutations in RFCS and biochemically characterized them. Truncation of the C-terminal alpha-helix (alpha16) causes a failure in RFCS oligomerization and a loss of the stimulating activity for the PCNA-dependent DNA synthesis by DNA polymerases. The site-directed reduction of the negative charges at the center part of the RFCS complex affected the stability of the RFC-PCNA interaction and reduced the clamp-loading activity. These results contribute to our general understanding of the structure-function relationship of the RFC molecule for the clamp-loading event.  相似文献   

12.
DNA polymerase requires two processing factors, sliding clamps and clamp loaders, to direct rapid and accurate duplication of genomic DNA. In eukaryotes, proliferating cell nuclear antigen (PCNA), the ring-shaped sliding clamp, encircles double-stranded DNA within its central hole and tethers the DNA polymerases onto DNA. Replication factor C (RFC) acts as the clamp loader, which correctly installs the sliding clamp onto DNA strands in an ATP-dependent manner. Here we report the three-dimensional structure of an archaeal clamp-loading complex (RFC-PCNA-DNA) determined by single-particle EM. The three-dimensional structure of the complex, reconstituted in vitro using a nonhydrolyzable ATP analog, reveals two components, a closed ring and a horseshoe-shaped element, which correspond to PCNA and RFC, respectively. The atomic structure of PCNA fits well into the closed ring, suggesting that this ternary complex represents a state just after the PCNA ring has closed to encircle the DNA duplex.  相似文献   

13.
Replication factor C (RFC) loads the clamp protein PCNA onto DNA structures. Ctf18-RFC, which consists of the chromosome cohesion factors Ctf18, Dcc1, and Ctf8 and four small RFC subunits, functions as a second proliferating cell nuclear antigen (PCNA) loader. To identify potential targets of Ctf18-RFC, human cell extracts were assayed for DNA polymerase activity specifically stimulated by Ctf18-RFC in conjunction with PCNA. After several chromatography steps, an activity stimulated by Ctf18-RFC but not by RFC was identified. Liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis revealed the presence of two DNA polymerases, eta and lambda, in the most purified fraction, but experiments with purified recombinant proteins demonstrated that only polymerase (pol) eta was responsible for activity. Ctf18-RFC alone stimulated pol eta, and the addition of PCNA cooperatively increased stimulation. Furthermore, Ctf18-RFC interacted physically with pol eta, as indicated by co-precipitation in human cells. We propose that this novel loader-DNA polymerase interaction allows DNA replication forks to overcome interference by various template structures, including damaged DNA and DNA-protein complexes that maintain chromosome cohesion.  相似文献   

14.
The primary structure of the iron-sulfur subunit of ubiquinol-cytochrome c reductase from Neurospora mitochondria was determined by cDNA and genomic DNA sequencing. A first cDNA was identified from a cDNA bank cloned in Escherichia coli by hybridization selection of mRNA, cell-free protein synthesis and immunoadsorption. Further cDNA and geonomic DNA were identified by colony filter hybridization. The N-terminal sequence of the mature protein was determined by automated Edman degradation. From the sequence a molecular mass of 24749 Da results for the precursor protein and of 21556 Da for the mature protein. The presequence consists of 32 amino acids with four arginines as the only charged residues. The mature protein consists of 199 amino acids. It is characterized by a small N-terminal hydrophilic part of 29 residues, a hydrophobic stretch of 25 residues and a large C-terminal hydrophilic domain of 145 residues. The only four cysteines of the protein, which are assumed to bind the 2 Fe-2S cluster, are located in a moderate hydrophobic region of this large domain. Cysteines 3 and 4 are unusually arranged in that they are separated by only one proline. From sequence data the arrangement of the subunit in the membrane is deduced.  相似文献   

15.
The multi-subunit replication factor C (RFC) complex loads circular proliferating cell nuclear antigen (PCNA) clamps onto DNA where they serve as mobile tethers for polymerases and coordinate the functions of many other DNA metabolic proteins. The clamp loading reaction is complex, involving multiple components (RFC, PCNA, DNA, and ATP) and events (minimally: PCNA opening/closing, DNA binding/release, and ATP binding/hydrolysis) that yield a topologically linked clamp·DNA product in less than a second. Here, we report pre-steady-state measurements of several steps in the reaction catalyzed by Saccharomyces cerevisiae RFC and present a comprehensive kinetic model based on global analysis of the data. Highlights of the reaction mechanism are that ATP binding to RFC initiates slow activation of the clamp loader, enabling it to open PCNA (at ~2 s(-1)) and bind primer-template DNA (ptDNA). Rapid binding of ptDNA leads to formation of the RFC·ATP·PCNA(open)·ptDNA complex, which catalyzes a burst of ATP hydrolysis. Another slow step in the reaction follows ATP hydrolysis and is associated with PCNA closure around ptDNA (8 s(-1)). Dissociation of PCNA·ptDNA from RFC leads to catalytic turnover. We propose that these early and late rate-determining events are intramolecular conformational changes in RFC and PCNA that control clamp opening and closure, and that ATP binding and hydrolysis switch RFC between conformations with high and low affinities, respectively, for open PCNA and ptDNA, and thus bookend the clamp loading reaction.  相似文献   

16.
Replication and related processes in eukaryotic cells require replication factor C (RFC) to load a molecular clamp for DNA polymerase in an ATP-driven process, involving multiple molecular interactions. The detailed understanding of this mechanism is hindered by the lack of data regarding structure, mutual arrangement, and dynamics of the players involved. In this study, we analyzed interactions that take place during loading onto DNA of either the PCNA clamp or the Rad9-Rad1-Hus1 checkpoint complex, using computationally derived molecular models. Combining the modeled structures for each RFC subunit with known structural, biochemical, and genetic data, we propose detailed models of how two of the RFC subunits, RFC1 and RFC3, interact with the C-terminal regions of PCNA. RFC1 is predicted to bind PCNA similarly to the p21-PCNA interaction, while the RFC3-PCNA binding is proposed to be similar to the E. coli delta-beta interaction. Additional sequence and structure analysis, supported by experimental data, suggests that RFC5 might be the third clamp loader subunit to bind the equivalent PCNA region. We discuss functional implications stemming from the proposed model of the RFC1-PCNA interaction and compare putative clamp-interacting regions in RFC1 and its paralogs, Rad17 and Ctf18. Based on the individual intermolecular interactions, we propose RFC and PCNA arrangement that places three RFC subunits in association with each of the three C-terminal regions in PCNA. The two other RFC subunits are positioned at the two PCNA interfaces, with the third PCNA interface left unobstructed. In addition, we map interactions at the level of individual subunits between the alternative clamp loader/clamp system, Rad17-RFC(2-5)/Rad9-Rad1-Hus1. The proposed models of interaction between two clamp/clamp loader pairs provide both structural framework for interpretation of existing experimental data and a number of specific findings that can be subjected to direct experimental testing.  相似文献   

17.
Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3'-5' exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex.  相似文献   

18.
Replication factor C (RFC) is an AAA+ heteropentamer that couples the energy of ATP binding and hydrolysis to the loading of the DNA polymerase processivity clamp, proliferating cell nuclear antigen (PCNA), onto DNA. RFC consists of five subunits in a spiral arrangement (RFC-A, -B, -C, -D, and -E, corresponding to subunits RFC1, RFC4, RFC3, RFC2, and RFC5, respectively). The RFC subunits are AAA+ family proteins and the complex contains four ATP sites (sites A, B, C, and D) located at subunit interfaces. In each ATP site, an arginine residue from one subunit is located near the gamma-phosphate of ATP bound in the adjacent subunit. These arginines act as "arginine fingers" that can potentially perform two functions: sensing that ATP is bound and catalyzing ATP hydrolysis. In this study, the arginine fingers in RFC were mutated to examine the steps in the PCNA loading mechanism that occur after RFC binds ATP. This report finds that the ATP sites of RFC function in distinct steps during loading of PCNA onto DNA. ATP binding to RFC powers recruitment and opening of PCNA and activates a gamma-phosphate sensor in ATP site C that promotes DNA association. ATP hydrolysis in site D is uniquely stimulated by PCNA, and we propose that this event is coupled to PCNA closure around DNA, which starts an ordered hydrolysis around the ring. PCNA closure severs contact to RFC subunits D and E (RFC2 and RFC5), and the gamma-phosphate sensor of ATP site C is switched off, resulting in low affinity of RFC for DNA and ejection of RFC from the site of PCNA loading.  相似文献   

19.
By multiple sequence alignments of DNA polymerases from the eukaryotic-type (family B) subgroup of protein-primed DNA polymerases we have identified five positively charged amino acids, specifically conserved, located N-terminally to the (S/T)Lx(2)h motif. Here, we have studied, by site-directed mutagenesis, the functional role of phi29 DNA polymerase residues Arg96, Lys110, Lys112, Arg113 and Lys114 in specific reactions dependent on a protein-priming event. Mutations introduced at residues Arg96, Arg113 and Lys114 and to a lower extent Lys110 and Lys112, showed a defective protein-primed initiation step. Analysis of the interaction with double-stranded DNA and terminal protein (TP) displayed by mutant derivatives R96A, K110A, K112A, R113A and K114A allows us to conclude that phi29 DNA polymerase residue Arg96 is an important DNA/TP-ligand residue, essential to form stable DNA polymerase/DNA(TP) complexes, while residues Lys110, Lys112 and Arg113 could be playing a role in establishing contacts with the TP-DNA template during the first step of DNA replication. The importance of residue Lys114 to make a functionally active DNA polymerase/TP complex is also discussed. These results, together with the high degree of conservation of those residues among protein-primed DNA polymerases, strongly suggest a functional role of those amino acids in establishing the appropriate interactions with DNA polymerase substrates, DNA and TP, to successfully accomplish the first steps of TP-DNA replication.  相似文献   

20.
Phylogenetic analysis of archaeal PCNA homologues   总被引:2,自引:0,他引:2  
Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. Eukaryotes and euryarchaeotes, which belong to one subdomain of Archaea, possess a single PCNA homologue, whereas two distinct PCNA homologues have been identified from Sulfolobus solfataricus, which belongs to the other archaeal subdomain, Crenarchaeota. We have cloned and sequenced two genes of PCNA homologues from the thermoacidophilic crenarchaeon Sulfurisphaera ohwakuensis. These genes, referred to as the Soh PCNA A gene and the Soh PCNA B gene, were found to encode 245 amino acids (aa) (27 kDa) and 248 aa (27 kDa), respectively. In deduced amino acid sequences of both PCNA homologues, the motif L/I-A-P-K/R, implicated in binding of PCNA with replication factor C (RFC), was identified. Phylogenetic analysis of all available archaeal PCNA homologues suggests that crenarchaeal homologues are divided into two groups. Group A consists of Soh PCNA A, one of the S. solfataricus PCNA homologues, and one of the Aeropyrum pernix PCNA homologues. The other crenarchaeal homologues form group B. Crenarchaeal PCNA homologues constitute a monophyletic subfamily. These results suggest that the evolution of crenarchaeal PCNA homologues has been characterized by one or two gene duplication events, which are assumed to have occurred after the split of the crenarchaeal and euryarchaeal lineages. Received: July 10, 2000 / Accepted: September 26, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号