首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pyrroloquinoline quinone (PQQ) is a redox cofactor utilized by a number of prokaryotic dehydrogenases. Not all prokaryotic organisms are capable of synthesizing PQQ, even though it plays important roles in the growth and development of many organisms, including humans. The existence of PQQ-dependent enzymes in eukaryotes has been suggested based on homology studies or the presence of PQQ-binding motifs, but there has been no evidence that such enzymes utilize PQQ as a redox cofactor. However, during our studies of hemoproteins, we fortuitously discovered a novel PQQ-dependent sugar oxidoreductase in a mushroom, the basidiomycete Coprinopsis cinerea. The enzyme protein has a signal peptide for extracellular secretion and a domain for adsorption on cellulose, in addition to the PQQ-dependent sugar dehydrogenase and cytochrome domains. Although this enzyme shows low amino acid sequence homology with known PQQ-dependent enzymes, it strongly binds PQQ and shows PQQ-dependent activity. BLAST search uncovered the existence of many genes encoding homologous proteins in bacteria, archaea, amoebozoa, and fungi, and phylogenetic analysis suggested that these quinoproteins may be members of a new family that is widely distributed not only in prokaryotes, but also in eukaryotes.  相似文献   

2.
采用cDNA末端快速扩增的办法,从孔石莼(Ulva pertusa)中克隆获得质体蓝素基因。该基因完整的cDNA为787bp,包括40 bp 5’端非编码区和327 bp的3’端非编码区,以及一个420 bp的开放阅读框架,编码139个氨基酸的蛋白质。该基因编码质体蓝素的前体肽,其N端41个氨基酸残基为信号肽,后面为98个氨基酸残基的成熟肽。从Genbank中选择了13个质体蓝素的前体肽基因进行序列比对分析和构建进化树。孔石莼质体蓝素基因与其它质体蓝素基因的同源性为48.2%至78.8%。该进化树将来源于6种藻类植物的7个质体蓝素基因聚类在一起,显示出它们较近的进化关系。同样,也表现出11种生物的分子进化关系。序列比对结果显示,在质体蓝素的基因序列中存在两个高度保守的基序,它编码质体蓝素蛋白的铜结合活性位点。  相似文献   

3.
Molecular phylogeny among catalase-peroxidases, cytochrome c peroxidases, and ascorbate peroxidases was analysed. Sixty representative sequences covering all known subgroups of class I of the superfamily of bacterial, fungal, and plant heme peroxidases were selected. Each sequence analysed contained the typical peroxidase motifs evolved to bind effectively the prosthetic heme group, enabling peroxidatic activity. The N-terminal and C-terminal domains of catalase-peroxidases matching the ancestral tandem gene duplication event were treated separately in the phylogenetic analysis to reveal their specific evolutionary history. The inferred unrooted phylogenetic tree obtained by three different methods revealed the existence of four clearly separated clades (C-terminal and N-terminal domains of catalase-peroxidases, ascorbate peroxidases, and cytochrome c peroxidases) which were segregated early in the evolution of this superfamily. From the results, it is obvious that the duplication event in the gene for catalase-peroxidase occurred in the later phase of evolution, in which the individual specificities of the peroxidase families distinguished were already formed. Evidence is presented that class I of the heme peroxidase superfamily is spread among prokaryotes and eukaryotes, obeying the birth-and-death process of multigene family evolution.  相似文献   

4.
A cDNA library from rat brain was constructed in pBR322 and screened with a 14-mer mixed oligonucleotide probe based on residues 231-235 of bovine proteolipid (PLP). A positive clone was isolated: it contained a 1334-base-pair cDNA insert and was subjected to DNA sequence analysis. The cDNA encoded information for the 276 amino acids of rat PLP. Comparison with bovine PLP sequence showed a complete amino acid sequence homology except for 4 amino acid residues.  相似文献   

5.
A cDNA encoding a novel copper amine oxidase (CAO) was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae), which produces the Lycopodium alkaloid huperzine A. A 2043-bp open reading frame encoded an Mr 76,854 protein with 681 amino acids. The deduced amino acid sequence shared 44-56% identity with the known CAOs of plant origin, and contained the active site consensus sequence of Asn-Tyr-Asp/Glu. The phylogenetic tree analysis revealed that HsCAO from the primitive vascular plant H. serrata is closely related to Physcomitrella patens subsp CAO. The recombinant enzyme, heterologously expressed in Escherichia coli, catalyzed the oxidative deamination of aliphatic and aromatic amines. Among them, the enzyme accepted cadaverine as the best substrate to catalyze the oxidative deamination to Δ(1)-piperideine, which is the precursor of the Lycopodium alkaloids. Furthermore, a homology modeling and site-directed mutagenesis studies predicted the active site architecture, which suggested the crucial active site residues for the observed substrate preference. This is the first report of the cloning and characterization of a CAO enzyme from the primitive Lycopodium plant.  相似文献   

6.
Homology of 18 amino acid sequences of lens gamma-crystallins of several vertebrates: frog, mouse, rat, calf and human being--has been considered. Pair sequence homology varies in the range from 57 to 100%, the mean value is equal to 74%. The spatial structures have been determined only for two calf gamma-crystallins. The protein molecule consists of four-fold repeated "motifs" (patterns) which are joint in two domains. After comparison of 18 gamma-crystallin sequences it was found that "motifs" domains and whole protein molecules have about 10, 30 and 58% conservative residues, respectively, that seem to be related to the evolution of these structural units. Structure analysis shows that almost all the conservative residues have an important structural meaning and play a basic role in the domain and molecular structure organization. This result allows us to make a conclusion about the homology of spatial structures of all considered gamma-crystallins of vertebrates.  相似文献   

7.
A total of 48 full-length protein sequences of pectin lyases from different source organisms available in NCBI were subjected to multiple sequence alignment, domain analysis, and phylogenetic tree construction. A phylogenetic tree constructed on the basis of the protein sequences revealed two distinct clusters representing pectin lyases from bacterial and fungal sources. Similarly, the multiple accessions of different source organisms representing bacterial and fungal pectin lyases also formed distinct clusters, showing sequence level homology. The sequence level similarities among different groups of pectinase enzymes, viz. pectin lyase, pectate lyase, polygalacturonase, and pectin esterase, were also analyzed by subjecting a single protein sequence from each group with common source organism to tree construction. Four distinct clusters representing different groups of pectinases with common source organisms were observed, indicating the existing sequence level similarity among them. Multiple sequence alignment of pectin lyase protein sequence of different source organisms along with pectinases with common source organisms revealed a conserved region, indicating homology at sequence level. A conserved domain Pec_Lyase_C was frequently observed in the protein sequences of pectin lyases and pectate lyases, while Glyco_hydro_28 domains and Pectate lyase-like β-helix clan domain are frequently observed in polygalacturonases and pectin esterases, respectively. The signature amino acid sequence of 41 amino acids, i.e. TYDNAGVLPITVN-SNKSLIGEGSKGVIKGKGLRIVSGAKNI, related with the Pec_Lyase_C is frequently observed in pectin lyase protein sequences and might be related with the structure and enzymatic function.  相似文献   

8.
Using several consensus sequences for the 106 amino acid residue alpha-spectrin repeat segment as probes we searched animal sequence databases using the BLAST program in order to find proteins revealing limited, but significant similarity to spectrin. Among many spectrins and proteins from the spectrin-alpha-actinin-dystrophin family as well as sequences showing a rather high degree of similarity in very short stretches, we found seven homologous animal sequences of low overall similarity to spectrin but showing the presence of one or more spectrin-repeat motifs. The homology relationship of these sequences to alpha-spectrin was further analysed using the SEMIHOM program. Depending on the probe, these segments showed the presence of 6 to 26 identical amino acid residues and a variable number of semihomologous residues. Moreover, we found six protein sequences, which contained a sequence fragment sharing the SH3 (sarc homology region 3) domain homology of 42-59% similarity. Our data indicate the occurrence of motifs of significant homology to alpha-spectrin repeat segments among animal proteins, which are not classical members of the spectrin-alpha-actinin-dystrophin family. This might indicate that these segments together with the SH3 domain motif are conserved in proteins which possibly at the early stage of evolution were close cognates of spectrin-alpha-actinin-dystrophin progenitors but then evolved separately.  相似文献   

9.
Several d-amino acids have been identified in plants. However, the biosynthetic pathway to them is unclear. In this study, we cloned and sequenced a cDNA encoding a serine racemase from barley which contained an open reading frame encoding 337 amino acid residues. The deduced amino acid sequence showed significant identity to plant and mammalian serine racemases and contained conserved pyridoxal 5-phosphate (PLP)-binding lysine and PLP-interacting amino acid residues. The purified gene product catalyzed not only racemization of serine but also dehydration of serine to pyruvate. The enzyme requires PLP and divalent cations such as Ca(2+), Mg(2+), or Mn(2+), but not ATP, whereas mammalian serine racemase activity is increased by ATP. In addition to the results regarding the effect of ATP on enzyme activity and the phylogenetic analysis of eukaryotic serine racemases, the antiserum against Arabidopsis serine racemase did not form a precipitate with barley and rice serine racemases. This suggests that plant serine racemases represent a distinct group in the eukaryotic serine racemase family and can be clustered into monocot and dicot types.  相似文献   

10.
The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing the PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive with MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.  相似文献   

11.
Leucine-rich Repeat Receptor-like Kinases in Plants   总被引:10,自引:0,他引:10  
Plant leucine-rich repeat receptor-like kinases were identified from databases using computer programs. Sequence comparison indicated that consensus sequences of the leucine-rich repeat motifs are highly conserved among these proteins. Multiple alignment of the catalytic kinase domains of all sequences displayed an overall amino acid sequence similarity. A phylogenetic analysis indicated that leucine- rich repeat receptor-like kinases form four subgroups in plants.  相似文献   

12.
Analysis of the predicted amino acid sequence of Bacillus anthracis adenylyl cyclase revealed sequences with homology to consensus sequences for A- and B-type ATP binding domains found in many ATP binding proteins. Based on the analysis of nucleotide binding proteins, a conserved basic amino acid residue in the A-type consensus sequence and a conserved acidic amino acid residue in the B-type consensus sequence have been implicated in the binding of ATP. The putative ATP binding sequences in the B. anthracis adenylyl cyclase possess analogous lysine residues at positions 346 and 353 within two A-type consensus sequences and a glutamate residue at position 436 within a B-type consensus sequence. The two A-type consensus sequences overlap each other and have the opposite orientation. To determine whether Lys-346, Lys-353, or Glu-436 of the B. anthracis adenylyl cyclase are crucial for enzyme activity, Lys-346 and Lys-353 were replaced with methionine and Glu-436 with glutamine by oligonucleotide-directed mutagenesis. Furthermore, Lys-346 was also replaced with arginine. The genes encoding the wild type and mutant adenylyl cyclases were placed under the control of the lac promoter for expression in Escherichia coli, and extracts were assayed for adenylyl cyclase activity. In all cases, a 90-kDa polypeptide corresponding to the catalytic subunit of the enzyme was detected in E. coli extracts by rabbit polyclonal antibodies raised against the purified B. anthracis adenylyl cyclase. The proteins with the Lys-346 to methionine or arginine mutations exhibited no adenylyl cyclase activity, indicating that Lys-346 in the A-type ATP binding consensus sequence plays a critical role for enzyme catalysis. Furthermore, the enzyme with the Lys-353 to methionine mutation was also inactive, suggesting that Lys-353 may also directly contribute to enzyme catalysis. In contrast, the protein with the Glu-436 to glutamine mutation retained 75% of enzyme activity, suggesting that Glu-436 in the B-type ATP binding consensus sequence may not be directly involved in enzyme catalysis. It is concluded that Lys-346 and Lys-353 in B. anthracis adenylyl cyclase may interact directly with ATP and contribute to the binding of the nucleotide to the enzyme.  相似文献   

13.
The tannase protein sequences of 149 bacteria and 36 fungi were retrieved from NCBI database. Among them only 77 bacterial and 31 fungal tannase sequences were taken which have different amino acid compositions. These sequences were analysed for different physical and chemical properties, superfamily search, multiple sequence alignment, phylogenetic tree construction and motif finding to find out the functional motif and the evolutionary relationship among them. The superfamily search for these tannase exposed the occurrence of proline iminopeptidase-like, biotin biosynthesis protein BioH, O-acetyltransferase, carboxylesterase/thioesterase 1, carbon–carbon bond hydrolase, haloperoxidase, prolyl oligopeptidase, C-terminal domain and mycobacterial antigens families and alpha/beta hydrolase superfamily. Some bacterial and fungal sequence showed similarity with different families individually. The multiple sequence alignment of these tannase protein sequences showed conserved regions at different stretches with maximum homology from amino acid residues 389–469 and 482–523 which could be used for designing degenerate primers or probes specific for tannase producing bacterial and fungal species. Phylogenetic tree showed two different clusters; one has only bacteria and another have both fungi and bacteria showing some relationship between these different genera. Although in second cluster near about all fungal species were found together in a corner which indicates the sequence level similarity among fungal genera. The distributions of fourteen motifs analysis revealed Motif 1 with a signature amino acid sequence of 29 amino acids, i.e. GCSTGGREALKQAQRWPHDYDGIIANNPA, was uniformly observed in 83.3 % of studied tannase sequences representing its participation with the structure and enzymatic function.  相似文献   

14.
The cloning and sequencing of a cDNA of the vitellogenin gene from the cockroach Blattella germanica is reported. It is 5,749 nucleotides long and encodes an amino acid sequence of 1,862 residues (including a putative signal peptide of 17 residues). The vitellogenin sequence includes a long serine-rich stretch between amino acids 322 and 349, and two other stretches between amino acids 1691 and 1740. The vitellogenin of B. germanica shows a notable similarity (between 32 and 42%) to those described in other insects, and its alignment shows a high number of motifs conserved in all species, especially in the subdomains I-V. Non-parsimony methods (Neighbor Joining) of phylogenetic analysis of the insect vitellogenin sequences gave a tree showing a topology that is, in general, congruent with the currently accepted insect phylogenetic schemes. Arch.  相似文献   

15.
16.
To clarify evolution and phylogenetic relationships of trypanosome alternative oxidase (AOX) molecules, AOX genes (cDNAs) of the African trypanosomes, Trypanosoma congolense and Trypanosoma evansi, were cloned by PCR. Both AOXs possess conserved consensus motifs (-E-, -EXXH-). The putative amino acid sequence of the AOX of T. evansi was exactly the same as that of T. brucei. A protein phylogeny of trypanosome AOXs revealed that three genetically and pathogenically distinct strains of T. congolense are closely related to each other. When all known AOX sequences collected from current databases were analyzed, the common ancestor of these three Trypanosoma species shared a sister-group position to T. brucei/T. evansi. Monophyly of Trypanosoma spp. was clearly supported (100% bootstrap value) with Trypanosoma vivax placed at the most basal position of the Trypanosoma clade. Monophyly of other eukaryotic lineages, terrestrial plants + red algae, Metazoa, diatoms, Alveolata, oomycetes, green algae, and Fungi, was reconstructed in the best AOX tree obtained from maximum likelihood analysis, although some of these clades were not strongly supported. The terrestrial plants + red algae clade showed the closest affinity with an alpha-proteobacterium, Novosphingobium aromaticivorans, and the common ancestor of these lineages, was separated from other eukaryotes. Although the root of the AOX subtree was not clearly determined, subsequent phylogenetic analysis of the composite tree for AOX and plastid terminal oxidase (PTOX) demonstrated that PTOX and related cyanobacterial sequences are of a monophyletic origin and their common ancestor is linked to AOX sequences.  相似文献   

17.
Chen D  Frey PA 《Biochemistry》2001,40(2):596-602
Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of L-lysine and L-beta-lysine. The enzyme contains pyridoxal 5'-phosphate (PLP) and a [4Fe-4S] center and requires S-adenosylmethionine (SAM) for activity. The hydrogen transfer is mediated by the 5'-deoxyadenosyl radical generated in a reaction of the iron-sulfur cluster with SAM. PLP facilitates the radical rearrangement by forming a lysine-PLP aldimine, in which the imine group participates in the isomerization mechanism. We here report the identification of lysine 346 as important for PLP binding and catalysis. Reduction of LAM with NaBH(4) rapidly inactivated the enzyme with concomitant UV/visible spectrum changes characteristic of reduction of an aldimine formed between PLP and lysine. Following reduction with NaBH(4) and proteolysis with trypsin, a single phosphopyridoxyl peptide of 36 amino acid residues was identified by reverse-phase liquid chromatography/mass spectrometry (LC/MS). The purified phosphopyridoxyl peptide exhibited an absorption band at 325 nm, and its identity was further confirmed by tandem mass spectrometry (MS/MS) sequencing. The bound PLP is linked to lysine 346 in a PGGGGK (PLP) structure. The sequence of this binding motif is conserved in LAMs from Bacillus and Clostridium and other homologous proteins but is distinct from the PLP-binding motifs found in other PLP enzymes. The function of lysine 346 was further studied by site-directed mutagenesis. The purified K346Q mutant was inactive, and its content of PLP was only approximately 15% of that of the wild-type enzyme. The data indicate that the formation of the aldimine linkage between lysine 346 and PLP is important for LAM catalysis. Sequences similar to the PLP-binding motifs in other enzymes were also present in LAM. However, lysine residues within these motifs neither are the PLP-binding sites in LAM nor are directly involved in LAM catalysis. This study represents the first comprehensive investigation of PLP binding in a SAM-dependent iron-sulfur enzyme.  相似文献   

18.
Amino acid sequences of E. coli glutamate decarboxylase (GADa) and those of 36 GAD of different origin were compared by pairwise alignment using computer program CLUSTAL. GADalpha and plant enzymes showed 59.8-67.8% subunit homology, GADalpha and other bacterial GAD--49.8-77.6%, whereas GADalpha and animal enzymes--13.9-58.8%. Two PLP domains exhibited higher homology comparing to that of the whole subunit in the case of GAD67, plant (68.4-73.9%), and bacterial (46.7-83.2%) enzymes. The alignment of PLP-domains of 37 GAD, three group II decarboxylases, and two pyridoxal enzymes with known 3D structures (bacterial ORD and mAAT from chicken heart) allowed us to reveal conserved residues of the active sites. Their functional role is discussed. Modelling of the PLP-binding sites in active centers for GADalpha and human brain GAD67 was done using the Swiss-PdbViewer homology modelling program. Although the homology between GADalpha and GAD67 is rather low, structural similarity of their active sites allows us to consider here a functional convergence. Thus, glutamate decarboxylation by GADalpha may be helpful for understanding general mechanism of this reaction.  相似文献   

19.
Structural and phylogenetic relationships among Bacteria and Eukaryota were analyzed by examining 292 methionine adenosyltransferase (MAT) amino acid sequences with respect to the crystal structure of this enzyme established for Escherichia coli and rat liver. Approximately 30% of MAT residues were found to be identical in all species. Five highly conserved amino acid sequence blocks did not vary in the MAT family. We detected specific structural features that correlated with sequence signatures for several clades, allowing taxonomical identification by sequence analysis. In addition, the number of amino acid residues in the loop connecting beta-strands A2 and A3 served to clearly distinguish sequences between eukaryotes and eubacteria. The molecular phylogeny of MAT genes in eukaryotes can be explained in terms of functional diversification coupled to gene duplication or alternative splicing and adaptation through strong structural constraints. Sequence analyses and intron/exon junction positions among nematodes, arthropods and vertebrates support the traditional Coelomata hypothesis. In vertebrates, the liver MAT I isoenzyme has gradually adapted its sequence towards one providing a more specific liver function. MAT phylogeny also served to cluster the major bacterial groups, demonstrating the superior phylogenetic performance of this ubiquitous, housekeeping gene in reconstructing the evolutionary history of distant relatives.  相似文献   

20.
A 100-kDa protein with endoglucanase activity was purified from Triton X-100 extract of cells of the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius. The enzyme exhibited activity towards carboxy methyl cellulose and oat spelt xylan with pH and temperature optima of 4 and 80 degrees C, respectively. Cloning and nucleotide sequence analysis of the corresponding gene (celB) revealed an ORF encoding a preprotein of 959 amino acids which is consistent with an extracellular localization. Purified recombinant CelB and a variant lacking the C-terminal 203 amino acid residues (CelBtrunc) displayed similar enzymatic properties as the wild-type protein. Analysis of product formation suggested an endo mode of action. Remarkable stability was observed at pH values between 1 and 7 and 60% of activity were retained after incubation for 1 h at 80 degrees C. CelB displayed homology to members of glycoside hydrolase family 51, being only the second entry with activity typical of an endoglucanase but lacking activity on p-nitrophenyl-alpha-l-arabinofuranoside (pNPAraf). Highest sequence similarity was found towards the other endoglucanase F from Fibrobacter succinogenes (EGF), forming a distinct group in the phylogenetic tree of this family. Analysis of the amino acid composition of the catalytic domains demonstrated that CelB contains fewer charged amino acids than its neutrophilic counterparts, which is in line with adaptation to low pH. Wild-type and full-length recombinant CelB were soluble only in Triton X-100. In contrast, CelBtrunc was completely water soluble, suggesting a role of the C-terminal region in cell association. This C-terminal hydrophobic region displayed local sequence similarities to an alpha-amylase from the same organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号