首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our purpose was to assess compensatory breathing responses to airway resistance unloading in ponies. We hypothesized that the carotid bodies and hilar nerve afferents, respectively, sense chemical and mechanical changes caused by unloading, hence carotid body-denervated (CBD) and hilar nerve-denervated ponies (HND) might demonstrate greater ventilatory responses when decreasing resistance. At rest and during treadmill exercise, resistance was transiently reduced approximately 40% in five normal, seven CBD, and five HND ponies by breathing gas of 79% He-21% O2 (He-O2). In all groups at rest, He-O2 breathing did not consistently change ventilation (VE), breathing frequency (f), tidal volume (VT), or arterial PCO2 (PaCO2) from room air-breathing levels. During treadmill exercise at 1.8 mph-5% grade in normal and HND ponies, He-O2 breathing did not change PaCO2 but at moderate (6 mph-5% grade), and heavy (8 mph-8% grade) work loads, absolute PaCO2 tended to decrease by 1 min of resistance unloading. delta PaCO2 calculated as room air minus He-O2 breathing levels at 1 min demonstrated significant changes in PaCO2 during exercise resistance unloading (P less than 0.05). No difference between normal and HND ponies was found in exercise delta PaCO2 responses (P greater than 0.10); however, in CBD ponies, the delta PaCO2 during unloading was greater at any given work load (P less than 0.05), suggesting finer regulation of PaCO2 in ponies with intact carotid bodies. During heavy exercise VE and f increased during He-O2 breathing in all three groups of ponies (P less than 0.05), although there were no significant differences between groups (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Total respiratory input (Zin) and transfer (Ztr) impedances were obtained from 4 to 30 Hz in 10 healthy subjects breathing air and He-O2. Zin was measured by applying pressure oscillations around the head to minimize the upper airway shunt and Ztr by applying pressure oscillations around the chest. Ztr was analyzed with a six-coefficient model featuring airways resistance (Raw) and inertance (Iaw), alveolar gas compressibility, and tissue resistance, inertance, and compliance. Breathing He-O2 significantly decreased Raw (1.35 +/- 0.32 vs. 1.74 +/- 0.49 cmH2O.l-1.s in air, P less than 0.01) and Iaw (0.59 +/- 0.33 vs. 1.90 +/- 0.44 x 10(-2) cmH2O.l-1.s2), but, as expected, it did not change the tissue coefficients significantly. Airways impedance was also separately computed by combining Zin and Ztr data. This approach demonstrated similar variations in Raw and Iaw with the lighter gas mixture. With both analyses, however, the changes in Iaw were more than what was expected from the change in density. This indicates that factors other than gas inertance are included in Iaw and reveals the short-comings of the six-coefficient model to interpret impedance data.  相似文献   

3.
The effects of taurine (0.8-64.8 mumol) were studied on respiratory activity following intracisternal (cisterna magna) and intracerebroventricular (lateral ventricle) injections in cats anesthetized with alpha-chloralose. Respiratory activity was measured by using a Fleisch pneumotachograph and monitoring tracheal airflow. The flow signal was integrated to obtain tidal volume (VT) and respiratory rate (f) was obtained by counting the number of VT excursions over one minute. Inspiratory (TI), expiratory (TE) and total (TTOT) cycle durations were also determined during this time period. In addition, end-tidal CO2 was continuously monitored. Associated changes in arterial pressure (femoral artery cannula) and heart rate were also determined. After injections into the cisterna magna, taurine caused dose-related decreases in minute ventilation (VE). The maximal decrease in VE was from 495 +/- 59 to 64 +/- 14 ml/min (p less than 0.05), and was due to both decreases in VT (from 27 +/- 3 to 5 +/- 1 ml; p less than 0.05) and f (from 18 +/- 1 to 12 +/- 2 breaths/min; p less than 0.05). TE and TTOT were increased from 2.4 +/- 0.4 to 4.5 +/- 0.6 sec (p less than 0.05) and from 3.7 +/- 0.4 to 6.4 +/- 0.8 sec (p less than 0.05), respectively. Mean inspiratory flow (VT/TI), a measure of inspiratory drive, was decreased from 21 +/- 4 to 4 +/- 2 ml/sec (p less than 0.05). Apnea occurred in 5 of 6 animals after the 64.8 mumol dose. This respiratory depression occurred without any significant change in arterial pressure. After lateral ventricle injections, taurine also caused dose-related, but not as pronounced, decreases in respiratory activity. In addition, taurine caused significant decreases (p less than 0.05) in arterial pressure in doses that decreased VE. Taurine administered intravenously had no significant cardiorespiratory depressant effects. These data indicate that centrally administered taurine produces respiratory depression and, depending on the route of CNS administration, also produces hypotension.  相似文献   

4.
Effect of He-O2-breathing (79.1%:20.9%) compared to air-breathing on inspiratory ventilation (VI) and its different components [tidal volume (VT), the duration of the phases of each respiratory cycle (tI, tTOT)] as well as on inspiratory mouth occlusion pressure (P0.1) were studied in six normal men at rest and during 72 constant-load exercises (90 W) over a much longer period than in previous studies. Results showed that, irrespective of the order of administration of the two gases (7 min air----7 min He-O2 or vice versa): at rest, P0.1 decreased during He-O2 inhalation but no changes in VI and breathing pattern were detectable; during exercise, sustained He-induced hyperventilation was observed without any change in the absolute value of P0.1; increase in P0.1 between the resting period and exercise (delta P0.1) was significantly higher during He-O2-breathing than during air breathing; this He-induced hyperventilation was associated with a sustained increase in VT/tI, but with constant tI/tTOT. Helium-breathing during exercise cannot be a simple situation of resistance unloading, as has been suggested. We conclude that He-O2-breathing, after the initial compensation period, induces reflex changes in ventilatory control with an increase in inspiratory neural drive. Moreover, it appears that exercise P0.1 is not a legitimate index of inspiratory neural drive whenever rest P0.1 changes according to the nature of the inhaled gas mixture.  相似文献   

5.
We measured the volume change of the thoracic cavity (delta Vth) and the volumes displaced by the diaphragm (delta Vdi) and rib cage (delta Vrc) in six pentobarbital-anesthetized dogs lying supine. A high-speed X-ray scanner (dynamic spatial reconstructor) provided three-dimensional images of the thorax during spontaneous breathing and during mechanical ventilation with paralysis. Tidal volume (VT) was measured by integrating gas flow. Changes in thoracic liquid volume (delta Vliq, presumably caused by changes in thoracic blood volume) were calculated as delta Vth - VT. Absolute volume displaced by the rib cage was not significantly different during the two modes of ventilation. During spontaneous breathing, thoracic blood volume increased during inspiration; delta Vliq was 12.3 +/- 4.1% of delta Vth. During mechanical ventilation, delta Vliq was nearly zero. Configuration of the relaxed chest wall was similar during muscular relaxation induced by either pharmacological paralysis or hyperventilation. Expiratory muscle activity produced 50 +/- 11% of the delta Vth during spontaneous breathing. We conclude that at constant VT the volume displaced by the rib cage is remarkably similar during the transition from spontaneous breathing to mechanical ventilation, while both diaphragmatic volume displacement and changes in intrathoracic blood volume decrease by a similar amount.  相似文献   

6.
Volume quantification of chest wall motion in dogs   总被引:3,自引:0,他引:3  
We employed high-speed multisliced X-ray-computed tomography to determine the relative volume contributions of rib cage (delta Vrc) and diaphragmatic motion (delta Vdi) to tidal volume (VT) during spontaneous breathing in 6 anesthetized dogs lying supine. Mean values were 40 +/- 6% (SE) for delta Vrc and 62 +/- 8% of VT for delta Vdi. The difference between VT and changes in thoracic cavity volume was taken to represent a change in thoracic blood volume (2 +/- 3% of VT). To estimate how much of delta Vrc was caused by diaphragmatic contraction and how much of delta Vdi was caused by rib cage motion, delta Vrc and delta Vdi were determined during bilateral stimulation of the C5-C6 phrenic nerve roots in the apneic dog and again during spontaneous breathing after phrenicotomy. Thoracic cavity volume (Vth) measured during hypocapnic apnea was consistently larger than Vth at end expiration, suggesting that relaxation of expiratory muscles contributed significantly to both delta Vrc and delta Vdi during spontaneous inspiration. Phrenic nerve stimulation did not contribute to delta Vrc, suggesting that diaphragmatic contraction had no net expanding action on the rib cage above the zone of apposition. Spontaneous breathing after phrenicotomy resulted in small and inconsistent diaphragmatic displacement (8 +/- 4% of VT). We conclude that the diaphragm does not drive the rib cage to inflate the lungs and that rib cage motion does not significantly affect diaphragmatic position during spontaneous breathing in anesthetized dogs lying supine.  相似文献   

7.
A setup is described for measuring the respiratory transfer impedance of conscious rats in the frequency range 16-208 Hz. The rats were placed in a restraining tube in which head and body were separated by means of a dough neck collar. The restraining tube was placed in a body chamber, allowing the application of pseudorandom noise pressure variations to the chest and abdomen. The flow at the airway opening was measured in a small chamber connected to the body chamber. The short-term reproducibility of the transfer impedance was tested by repeated measurements in nine Wistar rats. The mean coefficient of variation for the impedance did not exceed 10%. The impedance data were analyzed using different models of the respiratory system of which a three-coefficient resistance-inertance-compliance model provided the most reliable estimates of respiratory resistance (Rrs) and inertance (Irs). The model response, however, departed systematically from the measured impedance. A nine-coefficient model best described the data. Optimization of this model provided estimates of the respiratory tissue coefficients and upper and lower airway coefficients. Rrs with this model was 13.6 +/- 1.0 (SD) kPa.l-1.s, Irs was 14.5 +/- 1.3 Pa.l-1.s2, and tissue compliance (Cti) was 2.5 +/- 0.5 ml/kPa. The intraindividual coefficient of variation for Rrs and Irs was 11 and 18%, respectively. Because most of the resistance and inertance was located in the airways (85 and 81% of Rrs and Irs, respectively), the partitioning in tissue and upper and lower airway components was rather poor. Our values for Rrs and Irs of conscious rats were much lower and our values for Cti were higher than previously reported values for anesthetized rats.  相似文献   

8.
Effect of lung inflation on diaphragmatic shortening   总被引:1,自引:0,他引:1  
The effect of lung inflation on chest wall mechanics was studied in 11 vagotomized pentobarbital sodium-anesthetized dogs. Diaphragmatic shortening (percent change from initial length at functional residual capacity, %LFRC) and transdiaphragmatic pressure swings (delta Pdi) were compared with control values over a range of positive-pressure breathing that produced a maximum increase in lung volume to 40% of inspiratory capacity. There was no change in the electromyogram of the diaphragm or parasternal intercostals during positive-pressure breathing. delta Pdi and tidal volume (VT) fell to 52 +/- 3.3 and 42.5 +/- 5% (SE) of control. This was associated with a reduction in the initial resting length of 13 +/- 1.9 and 21 +/- 2.2%LFRC (SE) in the costal and crural diaphragms, respectively. Tidal diaphragmatic shortening, however, decreased to 66 +/- 7 and 57 +/- 7 and the mean velocity decreased to 78 +/- 10 and 63 +/- 8% (SE) of control for the costal and crural diaphragms, respectively. We conclude that the reduction in diaphragmatic shortening is the main determinant of the reduced delta Pdi and VT during lung inflation and relate this to what is currently known about diaphragmatic contractile properties.  相似文献   

9.
Total respiratory system compliance (Crs) at volumes above the tidal volume (VT) was studied by use of the expiratory volume clamping (EVC) technique in 10 healthy sleeping unsedated newborn infants. Flow was measured with a pneumotachograph attached to a face mask and integrated to yield volume. Volume changes were confirmed by respiratory inductance plethysmography. Crs measured by EVC was compared with Crs during tidal breathing determined by the passive flow-volume (PFV) technique. Volume increases of approximately 75% VT were achieved with three to eight inspiratory efforts during expiratory occlusions. Crs above VT was consistently greater than during tidal breathing (P less than 0.0005). This increase in Crs likely reflects recruitment of lung units that are closed or atelectatic in the VT range. Within the VT range, Crs measured by PFV was compared with that obtained by the multiple-occlusion method (MO). PFV yielded greater values of Crs than MO (P less than 0.01). This may be due to braking of expiratory airflow after the release of an occlusion or nonlinearity of Crs. Thus both volume recruitment and airflow retardation may affect the measurement of Crs in unsedated newborn infants.  相似文献   

10.
The respiratory inductance plethysmograph (RIP) has recently gained popularity in both the research and clinical arenas for measuring tidal volume (VT) and changes in functional residual capacity (delta FRC). It is important however, to define the likelihood that individual RIP measurements of VT and delta FRC would be acceptably accurate (+/- 10%) for clinical and investigational purposes in spontaneously breathing individuals on continuous positive airway pressure (CPAP). Additionally, RIP accuracy has not been compared in these regards after calibration by two commonly employed techniques, the least squares (LSQ) and the quantitative diagnostic calibration (QDC) methods. We compared RIP with pneumotachographic (PTH) measurements of delta FRC and VT during spontaneous mouth breathing on 0-10 cmH2O CPAP. Comparisons were made after RIP calibration with both the LSQ (6 subjects) and QDC (7 subjects) methods. Measurements of delta FRC by RIPLSQ and RIPQDC were highly correlated with PTH measurements (r = 0.94 +/- 0.04 and r = 0.98 +/- 0.01 (SE), respectively). However, only an average of 30% of RIPQDC determinations per subject and 31.4% of RIPLSQ determinations per subject were accurate to +/- 10% of PTH values. An average of 55.2% (QDC) and 68.8% (LSQ) of VT determinations per subject were accurate to +/- 10% of PTH values. We conclude that in normal subjects, over a large number of determinations, RIP values for delta FRC and VT at elevated end-expiratory lung volume correlate well with PTH values. However, regardless of whether QDC or LSQ calibration is used, only about one-third of individual RIP determinations of delta FRC and one-half of two-thirds of VT measurements will be sufficiently accurate for clinical and investigational use.  相似文献   

11.
We assessed the consequences of respiratory unloading associated with tracheostomy breathing (TBr). Three normal and three carotid body-denervated (CBD) ponies were prepared with chronic tracheostomies that at rest reduced physiological dead space (VD) from 483 +/- 60 to 255 +/- 30 ml and lung resistance from 1.5 +/- 0.14 to 0.5 +/- 0.07 cmH2O . l-1 . s. At rest and during steady-state mild-to-heavy exercise arterial PCO2 (PaCO2) was approximately 1 Torr higher during nares breathing (NBr) than during TBr. Pulmonary ventilation and tidal volume (VT) were greater and alveolar ventilation was less during NBr than TBr. Breathing frequency (f) did not differ between NBr and TBr at rest, but f during exercise was greater during TBr than during NBr. These responses did not differ between normal and CBD ponies. We also assessed the consequences of increasing external VD (300 ml) and resistance (R, 0.3 cmH2O . l-1 . s) by breathing through a tube. At rest and during mild exercise tube breathing caused PaCO2 to transiently increase 2-3 Torr, but 3-5 min later PaCO2 usually was within 1 Torr of control. Tube breathing did not cause f to change. When external R was increased 1 cmH2O . l-1 . s by breathing through a conventional air collection system, f did not change at rest, but during exercise f was lower than during unencumbered breathing. These responses did not differ between normal, CBD, and hilar nerve-denervated ponies, and they did not differ when external VD or R were added at either the nares or tracheostomy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The objective of the present study was to determine the effect of elevated inspired CO2 on respiratory dead space (VD) of 12 normal, 8 carotid body-denervated (CBD), 7 hilar nerve-denervated (HND), and 6 CBD+HND ponies. The Fowler technique was used to determine VD on a breath-by-breath basis while the ponies breathed room air and inspired CO2 at 3 and 6%. During room air breathing, tidal volume (VT) and VD were greater in HND ponies than in normal and CBD ponies (P less than 0.05), and VT was less and VD/VT was greater after CBD than before CBD. For all groups. VD, VT, and breathing frequency (f) increased and VD/VT decreased significantly (P less than 0.01) with increasing inspired CO2. During CO2 breathing, VT and VD were higher (P less than 0.05) in the HND ponies than in all other groups, the decrease (P less than 0.05) in VD/VT was greatest in the CBD+HND group, and f was lower in the HND and HND+CBD than in the normal and CBD ponies. In addition, when inspired CO2 was increased from 0 to 6%, the decrease in VD/VT was greater and the increase in arterial PCO2 was less (P less than 0.05) after CBD than before CBD. For 70% of the ponies in all groups, VD increased linearly with increases in VT; for most of the remainder, VD tended to plateau at higher values of VT.  相似文献   

13.
14.
The ventilatory response to exercise below ventilatory threshold (VTh) increases with aging, whereas above VTh the ventilatory response declines only slightly. We wondered whether this same ventilatory response would be observed in older runners. We also wondered whether their ventilatory response to exercise while breathing He-O(2) or inspired CO(2) would be different. To investigate, we studied 12 seniors (63 +/- 4 yr; 10 men, 2 women) who exercised regularly (5 +/- 1 days/wk, 29 +/- 11 mi/wk, 16 +/- 6 yr). Each subject performed graded cycle ergometry to exhaustion on 3 separate days, breathing either room air, 3% inspired CO(2), or a heliox mixture (79% He and 21% O(2)). The ventilatory response to exercise below VTh was 0.35 +/- 0.06 l x min(-1) x W(-1) and above VTh was 0.66 +/- 0.10 l x min(-1) x W(-1). He-O(2) breathing increased (P < 0.05) the ventilatory response to exercise both below (0.40 +/- 0.12 l x min(-1) x W(-1)) and above VTh (0.81 +/- 0.10 l x min(-1) x W(-1)). Inspired CO(2) increased (P < 0.001) the ventilatory response to exercise only below VTh (0.44 +/- 0.10 l x min(-1) x W(-1)). The ventilatory responses to exercise with room air, He-O(2), and CO(2) breathing of these fit runners were similar to those observed earlier in older sedentary individuals. These data suggest that the ventilatory response to exercise of these senior runners is adequate to support their greater exercise capacity and that exercise training does not alter the ventilatory response to exercise with He-O(2) or inspired CO(2) breathing.  相似文献   

15.
Tidal volume (VT) is usually preserved when conscious humans are made to breathe against an inspiratory resistance. To identify the neural changes responsible for VT compensation we calculated the respiratory driving pressure waveform during steady-state unloaded and loaded breathing (delta R = 8.5 cmH2O X 1(-1) X s) in eight conscious normal subjects. Driving pressure (DP) was calculated according to the method of Younes et al. (J. Appl. Physiol. 51: 963-989, 1981), which provides the equivalent of occlusion pressure at functional residual capacity throughout the breath. VT during resistance breathing was 108% of unloaded VT, as opposed to a predicted value of 82% of control in the absence of neural compensation. Compensation was accomplished through three changes in the DP waveform: 1) peak amplitude increased (+/- 23%), 2) the duration of the rising phase increased (+42%); and 3) the rising phase became more concave to the time axis. There were no changes in the relative decay rate of inspiratory pressure during expiration, in the shape of the declining phase of DP, or in end-expiratory lung volume.  相似文献   

16.
Airway obstruction during periodic breathing in premature infants   总被引:1,自引:0,他引:1  
To characterize changes in pulmonary resistance, timing, and respiratory drive during periodic breathing, we studied 10 healthy preterm infants (body wt 1,340 +/- 240 g, postconceptional age 35 +/- 2 wk). Periodic breathing in these infants was defined by characteristic cycles of ventilation with intervening respiratory pauses greater than or equal to 2 s. Nasal airflow was recorded with a pneumotachometer, and esophageal or pharyngeal pressure was recorded with a fluid-filled catheter. Pulmonary resistance at half-maximal tidal volume, inspiratory time (TI), expiratory time (TE), and mean inspiratory flow (VT/TI) were derived from computer analysis of five cycles of periodic breathing per infant. In 80% of infants periodic breathing was accompanied by completely obstructed breaths at the onset of ventilatory cycles; the site of airway obstruction occurred within the pharynx. The first one-third of the ventilatory phase of each cycle was accompanied by the highest airway resistance of the entire cycle (168 +/- 98 cmH2O.l-1.s). In all infants TI was greatest at the onset of the ventilatory cycle, VT/TI was maximal at the midpoint of the cycle, and TE was longest in the latter two-thirds of each cycle. A characteristic increase and subsequent decrease of 4.5 +/- 1.9 ml in end-expiratory volume also occurred within each cycle. These results demonstrate that partial or complete airway obstruction occurs during periodic breathing. Both apnea and periodic breathing share the element of upper airway instability common to premature infants.  相似文献   

17.
We determined the effects of denervating the hilar branches (HND) of the vagus nerves on breathing and arterial PCO2 (PaCO2) in awake ponies during eupnea and when inspired PCO2 (PICO2) was increased to 14, 28, and 42 Torr. In five carotid chemoreceptor-intact ponies, breathing frequency (f) was less, whereas tidal volume (VT), inspiratory time (TI), and ratio of TI to total cycle time (TT) were greater 2-4 wk after HND than before HND. HND per se did not significantly affect PaCO2 at any level of PICO2, and the minute ventilation (VE)-PaCO2 response curve was not significantly altered by HND. Finally, the attenuation of a thermal tachypnea by elevated PICO2 was not altered by HND. Accordingly, in carotid chemoreceptor-intact ponies, the only HND effect on breathing was the change in pattern classically observed with attenuated lung volume feedback. There was no evidence suggestive of a PCO2-H+ sensory mechanism influencing VE, f, VT, or PaCO2. In ponies that had the carotid chemoreceptors denervated (CBD) 3 yr earlier, HND also decreased f, increased VT, TI, and TT, but did not alter the slope of the VE-PaCO2 response curve. However, at all levels of elevated PICO2, the arterial hypercapnia that had persistently been attenuated, since CBD was restored to normal by HND. The data suggest that during CO2 inhalation in CBD ponies a hilar-innervated mechanism influences PaCO2 by reducing physiological dead space to increase alveolar ventilation.  相似文献   

18.
We hypothesized that upper airway collapsibility is modulated dynamically throughout the respiratory cycle in sleeping humans by alterations in respiratory phase and/or airflow regimen. To test this hypothesis, critical pressures were derived from upper airway pressure-flow relationships in six tracheostomized patients with obstructive sleep apnea. Pressure-flow relationships were generated by varying the pressure at the trachea and nose during tracheostomy (inspiration and expiration) (comparison A) and nasal (inspiration only) breathing (comparison B), respectively. When a constant airflow regimen was maintained throughout the respiratory cycle (tracheostomy breathing), a small yet significant decrease in critical pressure was found at the inspiratory vs. end- and peak-expiratory time point [7.1 +/- 1.6 (SE) to 6.6 +/- 1.9 to 6.1 +/- 1.9 cmH(2)O, respectively; P < 0.05], indicating that phasic factors exerted only a modest influence on upper airway collapsibility. In contrast, we found that the inspiratory critical pressure fell markedly during nasal vs. tracheostomy breathing [1.1 +/- 1.5 (SE) vs. 6.1 +/- 1.9 cmH(2)O; P < 0.01], indicating that upper airway collapsibility is markedly influenced by differences in airflow regimen. Tracheostomy breathing was also associated with a reduction in both phasic and tonic genioglossal muscle activity during sleep. Our findings indicate that both phasic factors and airflow regimen modulate upper airway collapsibility dynamically and suggest that neuromuscular responses to alterations in airflow regimen can markedly lower upper airway collapsibility during inspiration.  相似文献   

19.
Previous reports indicate that intravenous infusion of HCl can alter breathing and blood pressure even if reductions in systemic arterial pH are prevented. To extend these findings, as well as to determine whether other acids elicit comparable results, this report compares the cardiopulmonary response between right atrial infusion of lactic acid and HCl in awake ponies. Lactic acid, infused at a dose of 1.5 mmol/kg over 18 min, lowered systemic and pulmonary arterial pH 0.062 and 0.092 U, respectively, and increased pulmonary arterial pressure (delta Ppa, 4 mmHg), heart rate (HR, 4/min), and tidal volume (delta VT, 190 ml/m2). HCl, infused at a reduced dose of 0.5 mmol/kg over 18 min, lowered systemic and pulmonary arterial pH 0.024 and 0.047 U, respectively, but produced increases in Ppa (delta 23 mmHg), HR (delta 42/min), and VT (delta 321 ml/m2) that were significantly greater than from the larger dose of lactic acid. These results indicate that cardiopulmonary responses to infusion acidosis differ between the type of acid infused. It is suggested that, in the unanesthetized pony, HCl-induced infusion acidosis has a unique cardiopulmonary-stimulating action unrelated to the pH changes imparted to the circulating arterial blood and that this response is absent during the infusion of lactic acid.  相似文献   

20.
We studied the effect of increasing airway resistance on equilibration of airway and alveolar pressure during passive expiratory airflow interruption. In 10 anesthetized and paralyzed rabbits, airway and alveolar pressures were compared before and after airway resistance was increased with methacholine. In all studies, airway pressure rose to equilibrate with alveolar pressure immediately after the interruption (delta Pinit) regardless of increases in airway resistance. The pressures then remained equal during the interruption while gradually increasing to plateau (delta Pdiff). Before methacholine exposure, delta Pdiff was small (0.6 +/- 0.3 cmH2O). Steady-state resistance calculated from the sum of delta Pinit and delta Pdiff was similar to airway resistance calculated from delta Pinit alone. After methacholine, increased airway resistance was accompanied by increased delta Pdiff (2.0 +/- 0.5 cmH2O), causing disproportionate increase in steady-state resistance. delta Pdiff increases were equal in the airway and alveoli, implying resistive changes distal to the sampled alveoli. Thus increasing airway resistance did not delay pressure equilibration across airways. However, increases in airway resistance were accompanied by tissue resistive changes that were greater than the increases in airway resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号