首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the nature of the sugar moiety on quercetin absorption has been investigated in rats. Four groups of rats received an experimental meal containing 20 mg of quercetin equivalents, supplied as quercetin, quercetin 3-O-β-glucoside, quercetin 3-O-β-rhamnoside or rutin. Four hours after the meal, the metabolites identified in hydrolysed plasma were identical in all groups (3′- and 4′-methylquercetin). However, the total concentration of metabolites was markedly different: 11.2±1.8, 2.5±2.0 and 33.2±3.5 μM for the quercetin, rutin, and quercetin 3-glucoside meals respectively. After quercetin 3-rhamnoside consumption, we failed to detect any metabolites in the plasma. These data suggest that the 3-O-glucosylation improves the absorption of quercetin in the small intestine, whereas the binding of a rhamnose to the aglycone markedly depresses it. Additional experiments have shown that the higher plasma levels measured after quercetin 3-glucoside meal compared to the quercetin meal were maintained throughout the 24-hour period following the meal. Using a multi-electrode coulometric detection, together with suitable chromatographic conditions, we were able to distinguish between the conjugated and the glycosylated forms. Thus, we clearly showed the absence of quercetin 3-O-β-glucoside in the plasma from rats fed a diet containing this glucoside. This result suggests that quercetin 3-O-β-glucoside is hydrolysed before or during its intestinal absorption.  相似文献   

2.
The effect of the nature of the sugar moiety on quercetin absorption has been investigated in rats. Four groups of rats received an experimental meal containing 20 mg of quercetin equivalents, supplied as quercetin, quercetin 3-O-β-glucoside, quercetin 3-O-β-rhamnoside or rutin. Four hours after the meal, the metabolites identified in hydrolysed plasma were identical in all groups (3'- and 4'-methylquercetin). However, the total concentration of metabolites was markedly different: 11.2±1.8, 2.5±2.0 and 33.2±3.5 μM for the quercetin, rutin, and quercetin 3-glucoside meals respectively. After quercetin 3-rhamnoside consumption, we failed to detect any metabolites in the plasma. These data suggest that the 3-O-glucosylation improves the absorption of quercetin in the small intestine, whereas the binding of a rhamnose to the aglycone markedly depresses it. Additional experiments have shown that the higher plasma levels measured after quercetin 3-glucoside meal compared to the quercetin meal were maintained throughout the 24-hour period following the meal. Using a multi-electrode coulometric detection, together with suitable chromatographic conditions, we were able to distinguish between the conjugated and the glycosylated forms. Thus, we clearly showed the absence of quercetin 3-O-β-glucoside in the plasma from rats fed a diet containing this glucoside. This result suggests that quercetin 3-O-β-glucoside is hydrolysed before or during its intestinal absorption.  相似文献   

3.
Dietary intake of quercetin is suggested to be potentially beneficial for the prevention of various diseases. We examined the effect of α-oligoglucosylation of the sugar moiety of quercetin monoglucoside on its bioavailability in humans. Enzymatically modified isoquercitrin (EMIQ) was prepared by enzymatic deglycosylation and the subsequent of α-oligoglucosylation of quercetin 3-O-β-rutinode (rutin). The plasma level of quercetin metabolites was instantly increased by oral intake of EMIQ and its absorption efficiency was significantly higher than that of isoquercitrin (quercetin 3-O-β-glucoside; Q3G), and rutin. The profile of plasma quercetin metabolites after EMIQ consumption did not differ from that after Q3G consumption. The apparent log P of EMIQ indicated that EMIQ is more hydrophilic than Q3G but less than quercetin 3,4′-O-β-diglucoside. These data indicated that enzymatic α-oligoglucosylation to the sugar moiety is effective for enhancing the bioavailability of quercetin glucosides in humans.  相似文献   

4.
A highly soluble quercetin glycoside, alphaG-rutin, is a glucose adduct of insoluble rutin, and intestinal absorption and metabolism of alphaG-rutin has not been known. We investigated the intestinal absorption and metabolism of alphaG-rutin by using portal and duodenal cannulated rats and the isolated rat intestinal mucosa. After a duodenal instillation of alphaG-rutin (150 mumol), intact alphaG-rutin, rutin and quercetin were appeared in the portal blood and these concentrations were similarly increased at 15 min. Portal quercetin reached a peak value at 60 min, and the value was higher than those of alphaG-rutin and rutin at that time. Quercetin-conjugates were also increased 30 min after the instillation. The remaining of alphaG-rutin metabolites, mainly rutin, in the intestine were 58% of instilled alphaG-rutin after 150 min. In the experiment by using the isolated mucosa of the jejunum, ileum and cecum, alphaG-rutin and rutin, but not quercetin, appeared in the serosal sides of all segments, and they were increased linearly from 10 to 100 mmol/l of mucosal alphaG-rutin. We also showed portal injected alphaG-rutin was very rapidly cleared from the blood, and appeared a large amount of conjugates. In conclusion, a soluble flavonoid-glycoside, alphaG-rutin, was absorbed as glycosides into the portal blood. A part of alphaG-rutin was hydrolyzed to rutin, but not to aglycone, through the intestine.  相似文献   

5.
A highly soluble quercetin glycoside, αG-rutin, is a glucose adduct of insoluble rutin, and intestinal absorption and metabolism of αG-rutin has not been known. We investigated the intestinal absorption and metabolism of αG-rutin by using portal and duodenal cannulated rats and the isolated rat intestinal mucosa. After a duodenal instillation of αG-rutin (150 μmol), intact αG-rutin, rutin and quercetin were appeared in the portal blood and these concentrations were similarly increased at 15 min. Portal quercetin reached a peak value at 60 min, and the value was higher than those of αG-rutin and rutin at that time. Quercetin-conjugates were also increased 30 min after the instillation. The remaining of αG-rutin metabolites, mainly rutin, in the intestine were 58% of instilled αG-rutin after 150 min. In the experiment by using the isolated mucosa of the jejunum, ileum and cecum, αG-rutin and rutin, but not quercetin, appeared in the serosal sides of all segments, and they were increased linearly from 10 to 100 mmol/l of mucosal αG-rutin. We also showed portal injected αG-rutin was very rapidly cleared from the blood, and appeared a large amount of conjugates. In conclusion, a soluble flavonoid-glycoside, αG-rutin, was absorbed as glycosides into the portal blood. A part of αG-rutin was hydrolyzed to rutin, but not to aglycone, through the intestine.  相似文献   

6.
The flavonol glycosides characterized from the branches of Carya pecan include three new compounds, azaleatin 3-glucoside azaleatin 3-diglycoside and caryatin 3′- (or 4′-) rhamnoglucoside. together with azaleatin 3-rhamnoside. In the leaf tissue, quercetin 3-glucoside, quercetin 3-galactoside, quercetin 3-rhamnoside, quercetin 3-arabinoside and a small amount of kaempferol 3-monomethyl ether were identified.  相似文献   

7.
Flavonoids are antioxidants present in plant foods. They occur mainly as glycosides, i.e. linked with various sugars. It is uncertain to what extent dietary flavonoid glycosides are absorbed from the gut. We investigated how the nature of the sugar group affected absorption of one major flavonoid, quercetin. Quercetin linked with glucose, i.e. quercetin glucoside and quercetin linked with rutinose, i.e. quercetin rutinoside, both occur widely in foods. When we fed these compounds to nine volunteers, the peak concentration of quercetin (Cmax) in plasma was 20 times higher and was reached (Tmax) more than ten times faster after intake of the glucoside (Cmax = 3.5+/-0.6 microM (mean +/- SE); Tmax < 0.5 h) than after the rutinoside (Cmax = 0.18+/-0.04 microM; Tmax = 6.0+/-1.2 h). The bioavailability of the rutinoside was only 20% of that of the glucoside. We suggest that quercetin glucoside is actively absorbed from the small intestine, whereas quercetin rutinoside is absorbed from the colon after deglycosylation. Absorption of other food components might also be enhanced by attachment of a glucose group.  相似文献   

8.
The urinary recoveries of the hydroxycinnamates, ferulic acid (3-methoxy, 4-hydroxy cinnamic acid), and chlorogenic acid (the quinic acid ester of 3,4-dihydroxycinnamic acid), and three structurally related flavonoids were studied in the rat. For the latter, the aglycone quercetin was compared with its 3-glucoside (isoquercitrin) and 3-rhamnoglucoside (rutin). Doses of 50 mg/kg were administered via the oral and intravenous routes and urine collected over the subsequent 24-h period. Reverse phase HPLC with photo-diode array detection was used to analyze the unchanged compound and their metabolites excreted in the urine. Ferulic acid and isoquercitrin were orally absorbed (5.4 and 0.48% of administered dose, respectively) and are therefore bioavailable. In contrast, neither unchanged chlorogenic acid, rutin, quercetin, nor the conjugated metabolites in the form of glucuronide or sulphate were detected in the urine after oral dosing. All the flavonoids studied produced low total urinary recoveries after intravenous administration, 9.2% for quercetin-3-rhamnoglucoside, 6.7% for the 3-glucoside, and 2.4% for the aglycone, indicating that extensive metabolism to low molecular weight compounds or excretion via other routes may be occurring. Overall it can be stated that renal excretion is not a major pathway of elimination for intact flavonoids and hydroxycinnamates in the rat.  相似文献   

9.
Naringenin, the predominant flavanone in grapefruit, mainly occurs as glycosides such as naringenin-7- rhamnoglucoside or naringenin-7-glucoside. This study compared kinetics of absorption of naringenin and its glycosides in rats either after a single flavanone-containing meal or after adaptation to a diet for 14 days. Regardless of the diet, circulating metabolites were glucurono- and sulfoconjugated derivatives of naringenin. The kinetics of absorption of naringenin and naringenin-7-glucoside were similar, whereas naringenin-7-rhamnoglucoside exhibited a delay in its intestinal absorption, resulting in decreased bioavailability. After naringenin-7-glucoside feeding, no glucoside was found in the cecum. However, after feeding naringenin-7-rhamnoglucoside, some naringenin-7-rhamnoglucoside accumulated in cecum before being hydrolyzed by intestinal microflora. Adaptation to flavanone diets did not induce accumulation of plasma naringenin. Moreover, flavanone cecal content markedly decreased after adaptation, and almost no naringenin-7-rhamnoglucoside was recovered after naringenin-7-rhamnoglucoside feeding, suggesting that an adaptation of cecal microflora had occurred. Overall, these data indicate that flavanones are efficiently absorbed after feeding to rats and that their bioavailability is related to their glycosidic moiety.  相似文献   

10.
The terpenoid and flavonoid constituents of the hitherto unexamined medicinal plant Bridelia ferruginea are reported. Quercetin, quercetin 3-glucoside, rutin, myricetin 3-glucoside and myricetin 3-rhamnoside were identified.  相似文献   

11.
Leaf flavonoid glycosides of Eucalyptus camaldulensis were identified as kaempferol 3-glucoside and 3-glucuronide; quercetin 3-glucoside, 3-glucuronide, 3-rhamnoside, 3-rutinoside and 7-glucoside, apigenin 7-glucuronide and luteolin 7-glucoside and 7-glucuronide. Two chemical races were observed based on the flavonoid glycosides. These races correspond to the northern and southern populations of species growing in Australia. The Middle Eastern species examined were found to belong to the southern Australian chemical race. The major glycosides of E. occidentalis proved to be quercetin and myricetin 3-glucuronide.  相似文献   

12.
Flavonoid glycosides are common dietary components which may have health-promoting activities. The metabolism of these compounds is thought to influence their bioactivity and uptake from the small intestine. It has been suggested that the enzyme cytosolic beta-glucosidase could deglycosylate certain flavonoid glycosides. To test this hypothesis, the enzyme was purified to homogeneity from pig liver for the first time. It was found to have a molecular weight (55 kDa) and specific activity (with p-nitrophenol glucoside) consistent with other mammalian cytosolic beta-glucosidases. The pure enzyme was indeed found to deglycosylate various flavonoid glycosides. Genistein 7-glucoside, daidzein 7-glucoside, apigenin 7-glucoside and naringenin 7-glucoside all acted as substrates, but we were unable to detect activity with naringenin 7-rhamnoglucoside. Quercetin 4'-glucoside was a substrate, but neither quercetin 3, 4'-diglucoside, quercetin 3-glucoside nor quercetin 3-rhamnoglucoside were deglycosylated. Estimates of K(m) ranged from 25 to 90 microM while those for V(max) were about 10% of that found with the standard artificial substrate p-nitrophenol glucoside. The non-substrate quercetin 3-glucoside was found to partially inhibit deglycosylation of quercetin 4'-glucoside, but it had no effect upon activity with p-nitrophenol glucoside. This study confirms that mammalian cytosolic beta-glucosidase can deglycosylate some, but not all, common dietary flavonoid glycosides. This enzyme may, therefore, be important in the metabolism of these compounds.  相似文献   

13.
Regioselective glycosylation of flavonoids cannot be easily achieved due to the presence of several hydroxyl groups in flavonoids. This hurdle could be overcome by employing uridine diphosphate-dependent glycosyltransferases (UGTs), which use nucleotide sugars as sugar donors and diverse compounds including flavonoids as sugar acceptors. Quercetin rhamnosides contain antiviral activity. Two quercetin diglycosides, quercetin 3-O-glucoside-7-O-rhamnoside and quercetin 3,7-O-bisrhamnoside, were synthesized using Escherichia coli expressing two UGTs. For the synthesis of quercetin 3-O-glucoside-7-O-rhamnoside, AtUGT78D2, which transfers glucose from UDP-glucose to the 3-hydroxyl group of quercetin, and AtUGT89C1, which transfers rhamnose from UDP-rhamnose to the 7-hydroxyl group of quercetin 3-O-glucoside, were transformed into E. coli. Using this approach, 67 mg/L of quercetin 3-O-glucoside-7-O-rhamnoside was synthesized. For the synthesis of quercetin 3,7-O-bisrhamnoside, AtUGT78D1, which transfers rhamnose to the 3-hydroxy group of quercetin, and AtUGT89C1 were used. The RHM2 gene from Arabidopsis thaliana was coexpressed to supply the sugar donor, UDP-rhamnose. E. coli expressing AtUGT78D1, AtUGT89C1, and RHM2 was used to obtain 67.4 mg/L of quercetin 3,7-O-bisrhamnoside.  相似文献   

14.
Xylonagra arborea is a monotypic genus of the tribe Onagreae of the Onagraceae. The species is restricted to the desert regions of central Baja California in western Mexico. Four flavonol glycosides, myricetin 3-O-glucoside, myricetin 3-O-rhamnoside, quercetin 3-O-glucoside and quercetin 3-O-rhamnoside were found to occur in methanolic leaf extracts of each of the populations sampled. The data are consistent with earlier investigations of leaf flavonoids in the Onagreae and suggest interesting changes in B-ring hydroxylation patterns within the tribe.  相似文献   

15.
The small intestine can both absorb and glucuronidate luminal flavonoids.   总被引:9,自引:0,他引:9  
We have studied the perfusion of the jejunum and ileum in an isolated rat intestine model with flavonoids and hydroxycinnamates and the influence of glycosylation on the subsequent metabolism. Flavone and flavonol glucosides and their corresponding aglycones are glucuronidated during transfer across the rat jejunum and ileum and this glucuronidation occurs without the need for gut microflora. Furthermore, this suggests the presence of glycosidases as well as UDP-glucuronyl transferase in the jejunum. In contrast, quercetin-3-glucoside and rutin are mainly absorbed unmetabolised. The results suggest that the more highly reducing phenolics are absorbed predominantly as glucuronides (96.5%+/-4.6) of the amount absorbed, whereas monophenolic hydroxycinnamates and monophenolic B-ring flavonoids are less predisposed to glucuronidation and higher levels of aglycone (88.1%+/-10.1) are detected on absorption through both the jejunum and ileum.  相似文献   

16.
An analysis of about 100 populations of 39 taxa of Epilobium sect. Epilobium showed quercetin 3-0-rhamnoside and glucoside and myricetin 3-0-rhamnoside and glucoside to be present in most species, with the arabinosides present in some and in much smaller quantities. Kaempferol 3-0-rhamnoside was also present in some populations of some entities in small quantities. Variability, particularly in the presence of myricetin 3-0-rhamnoside and quercetin 3-0-glucoside, was characteristic of some species, especially those of Australia and New Zealand.  相似文献   

17.
In experiments on rats, some of the factors affecting flavonoids absorption (solubility, glycosylation and nutritional status: fasted and not-fasted animals) were examined. Administration of quercetin with different solubilization degree showed no direct correlation between the quercetin absorption extent and solubility, i.e. despite 3 orders of difference in solubilization degree, the extent of absorption varied only about 4-fold. Absorption comparison of genistein and its glycoside genistin showed no difference in the extent of absorption; however, aglycone, in contrast to glycoside, was absorbed already from the rat stomach. Conjugation patterns (sulfation and glucuronization) of genistein metabolites demonstrated that the plasma of animals fasted prior to isoflavone administration contained significantly more sulfates and less glucuronides and mixed sulfates/glucuronides conjugates than the plasma of non-fasted animals.  相似文献   

18.
Heterogaura is a monotypic genus of the tribe Onagreae of the Onagraceae. It is endemic to south western Oregon and California. Four flavonol glycosides, kaempferol 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin 3-O-rhamnoglucoside and myricetin 3-O-glucoside, were found to occur in methanolic leaf extracts of each of the populations sampled. The presence of only flavonols is consistent with flavonoid analyses from other genera of the Onagreae, including Clarkia, the closest relative of Heterogaura.  相似文献   

19.
Quercetin is a typical flavonoid ubiquitously present in fruits and vegetables, and its antioxidant effect is implied to be helpful for human health. The bioavailability of quercetin glycosides should be clarified, because dietary quercetin is mostly present as its glycoside form. Although quercetin glycosides are subject to deglycosidation by enterobacteria for the absorption at large intestine, small intestine acts as an effective absorption site for glucose-bound glycosides (quercertin glucosides). This is because small intestinal cells possess a glucoside-hydrolyzing activity and their glucose transport system is capable of participating in the glucoside absorption. A study using a cultured cell model for intestinal absorption explains that the hydrolysis of the glucosides accelerates their absorption in the small intestine. Small intestine is also recognized as the site for metabolic conversion of quercetin and other flavonoids as it possesses enzymatic activity of glucuronidation and sulfation. Modulation of the intestinal absorption and metabolism may be beneficial for regulating the biological effects of dietary quercetin.  相似文献   

20.
Flavonoids are antioxidants present in plant foods. They occur mainly as glycosides, i.e. linked with various sugars. It is uncertain to what extent dietary flavonoid glycosides are absorbed from the gut. We investigated how the nature of the sugar group affected absorption of one major flavonoid, quercetin. Quercetin linked with glucose, i.e. quercetin glucoside and quercetin linked with rutinose, i.e. quercetin rutinoside, both occur widely in foods. When we fed these compounds to nine volunteers, the peak concentration of quercetin (Cmax) in plasma was 20 times higher and was reached (Tmax) more than ten times faster after intake of the glucoside (Cmax = 3.5 ± 0.6 μM (mean ± SE); Tmax < 0.5 h) than after the rutinoside (Cmax = 0.18 ± 0.04 μM; Tmax = 6.0 ± 1.2 h). The bioavailability of the rutinoside was only 20% of that of the glucoside. We suggest that quercetin glucoside is actively absorbed from the small intestine, whereas quercetin rutinoside is absorbed from the colon after deglycosylation. Absorption of other food components might also be enhanced by attachment of a glucose group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号