首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Interspecific somatic cell hybrids containing single human chromosomes are valuable reagents for localization of cloned genes and DNA fragments to specific chromosomes, for the development of chromosome-specific libraries, and for generation of hybrid cell lines containing subchromosomal regions. A CHO somatic cell hybrid containing a single, intact human chromosome 14 (MHR14) was developed and confirmed by LINE PCR amplification gel pattern, by Alu-517 PCR product dot blot hybridization, and by cytogenetic analysis. MHR14 will serve as the chromosome source for the development of a radiation map of human chromosome 14.  相似文献   

2.
"PCR-karyotype" of human chromosomes in somatic cell hybrids   总被引:4,自引:0,他引:4  
Amplification of human DNA sequences in 16 monochromosomal somatic cell hybrids containing different human chromosomes were performed by the polymerase chain reaction (PCR) using primer directed at human-specific regions of Alu or L1, the two major classes of interspersed repetitive sequences (IRS-PCR). A chromosome-specific pattern of amplification products was observed on agarose gels run with ethidium bromide, producing a "PCR-karyotype." This simple gel analysis provides a rapid method for identifying and monitoring the human chromosomal content of monochromosomal somatic cell hybrids without conventional cytogenetic analysis. Hybrids containing multiple human chromosome produce complex gel patterns, but identification of chromosome content can be achieved by hybridization of PCR products against a reference panel of monochromosomal or highly reduced hybrids representing each human chromosome. This dot-blot method also enables identification of human marker chromosomes or translocated pieces in hybrids that are not identifiable by cytogenetic methods. These IRS-PCR methods should greatly reduce the need for more laborious cytogenetic, isozyme, and Southern blot characterizations of human-rodent cell hybrids.  相似文献   

3.
M C Simmler  R D Cox  P Avner 《Genomics》1991,10(3):770-778
A strategy for the rapid isolation of DNA probes from radiation-fusion Chinese hamster cell hybrids containing overlapping portions of the murine X chromosome based on the interspersed repetitive sequence polymerase chain reaction (IRS-PCR) previously used with human somatic cell hybrids has been developed. This specific amplification of mouse DNA on a hamster background depends on the use of primers directed to the B2 short interspersed repeat element family and the R repeat, from the long interspersed repeat element family, L1. Two sets of amplification conditions, which gave specific amplification of mouse DNA from either a mouse X-monochromosomal hybrid or irradiation-fusion hybrids having reduced X content, were defined. The mouse X-only chromosome hybrid yielded approximately 20 discrete reproducible bands, while the irradiation-fusion hybrids yielded between 1 and 10 discrete products. Comparison of different irradiation-fusion hybrids has allowed the definition of both specific and shared products corresponding to different regions within the overlapping X-chromosome fragments present within these hybrids. Use of such hybrids and the IRS-PCR technique has allowed the isolation of probes corresponding to the central region of the mouse X chromosome that contains the X-inactivation center. The method should be widely applicable to the isolation of mouse DNA sequences from mouse hybrid cell lines on either human or Chinese hamster backgrounds.  相似文献   

4.
A method was recently developed for the specific amplification of human DNA sequences from interspecific somatic cell hybrids by the polymerase chain reaction (PCR) using primers directed to Alu, a short interspersed repeat element (SINE). We now show human-specific amplification using a primer to the 3' end of the human long interspersed repeat element L1Hs (LINE). A monochromosomal hybrid containing an intact human X chromosome yielded approximately 25 discrete products, ranging in size from 800 to 4500 bp. Combination of a single Alu primer and the L1Hs primer yielded a large number of smaller products (300-1000 bp) distinct from those observed with either primer alone. Inspection of ethidium bromide-stained gels showed one Alu-Alu and three Alu-L1Hs products which were present in an intact X chromosome but absent in a hybrid containing an X chromosome deleted for the single metaphase band q28. These four fragments were isolated from the gel and used as probes on Southern blots which confirmed their localization to Xq28. These results demonstrate that primers can be constructed to a variety of interspersed repetitive sequences (IRS) and used individually or in combination for the rapid isolation of DNA fragments from defined chromosomal regions by IRS-PCR.  相似文献   

5.
The sites of sequences homologous to a murine cDNA for ribonucleotide reductase (RR) subunit M2 were determined on human and murine chromosomes by Southern blot analysis of interspecies somatic cell hybrid lines and by in situ hybridization. In the human genome, four chromosomal sites carrying RRM2-related sequences were identified at 1p31----p33, 1q21----q23, 2p24----p25, and Xp11----p21. In the mouse, M2 sequences were found on chromosomes 4, 7, 12, and 13 by somatic cell hybrid studies. By Southern analysis of human hydroxyurea-resistant cells that overproduce M2 because of gene amplification, we have identified the amplified restriction fragments as those that map to chromosome 2. To further confirm the site of the functional RRM2 locus, two other cDNA clones, p5-8 and S7 (coding for ornithine decarboxylase; ODC), which are coamplified with RRM2 sequences in human and rodent hydroxyurea-resistant cell lines, were mapped by Southern and in situ hybridization. Their chromosomal map positions coincided with the region of human chromosome 2 (p24----p25) that also contains one of the four RRM2-like sequences. Since this RRM2 sequence and p5-8 and ODC are most likely part of the same amplification unit, the RRM2 structural gene can be assigned to human chromosome 2p24----p25. This region is homologous to a region of mouse chromosome 12 that also carries one of numerous ODC-like sequences. In an RRM2-overproducing mouse cell line, we found amplification of the chromosome 12-specific restriction fragments. Thus, we conclude that mouse chromosome 12 carries the functional locus for RRM2.  相似文献   

6.
A strategy based on the use of human-specific interspersed repetitive sequence (IRS)-PCR amplification was used to isolate regional DNA markers in the vicinity of the incontinentia pigmenti 1 (IP1) locus. A radiation hybrid (RH) resulting from a fusion of an irradiated X-only somatic cell hybrid (C12D) and a thymidine kinase deficient (TK-) hamster cell line (a23) was identified as containing multiple X chromosome fragments, including DNA markers spanning IP1 X-chromosomal translocation breakpoints within region Xp11.21. From this RH, a panel of subclones was constructed and analyzed by IRS-PCR amplification to (a) identify subclones containing a reduced number of X chromosome fragments spanning the IP1 breakpoints and (b) construct a mapping panel to assist in identifying regional DNA markers in the vicinity of the IP1 locus. By using this strategy, we have isolated three different IRS-PCR amplification products that map to a region between IP1 X chromosome translocation breakpoints. A total of nine DNA sequences have now been mapped to this region; using these DNA markers for PFGE analyses, we obtained a probe order DXS14-DXS422-MTHFDL1-DXS705. These DNA markers provide a starting point for identifying overlapping genomic sequences spanning the IP1 translocation breakpoints; the availability of IP1 translocation breakpoints should assist the molecular analysis of this locus.  相似文献   

7.
Human acid sphingomyelinase (SMPD1) is the lysosomal phosphodiesterase that cleaves sphingomyelin to ceramide and phosphocholine. The deficient activity of SMPD1 is the enzymatic defect in Types A and B Niemann-Pick disease. Previously, the gene encoding human SMPD1 was assigned to chromosome 17 by the differential thermostability of human and hamster SMPD1 in somatic cell hybrids. The recent isolation of the human SMPD1 cDNA (L. E. Quintern, E. H. Schuchman, O. Levran, M. Suchi, K. Ferlinz, H. Reinke, K. Sandhoff, and R. J. Desnick, 1989, EMBO J. 8: 2469-2473) permitted the mapping of this gene by molecular techniques. Oligonucleotide primers were synthesized to PCR amplify the human, but not murine, SMPD1 sequences in man-mouse somatic cell hybrids. In a panel of 15 hybrid cell lines, amplification of the human SMPD1 sequence was 100% concordant with the presence of human chromosome 11. For each of the other human chromosomes there were at least 6 discordant hybrid lines. Further analysis of somatic cell hybrids containing only chromosome 11 or chromosome 11 rearrangements localized the human SMPD1 gene to the region 11p15.1----p15.4. To provide an independent regional gene assignment, in situ hybridization was performed using the radiolabeled human SMPD1 cDNA. In the 58 metaphase cells examined, 34% of the 122 hybridization sites scored were located in the distal end of chromosome 11 with the major peak of hybridization at band 11p15. The absence of any other in situ hybridization site indicated the absence of pseudogenes or homologous sequences elsewhere in the genome. In contrast to the previous provisional localization to chromosome 17, these results assign a single locus for human SMPD1 to 11p15.1----p15.4.  相似文献   

8.
Interspersed repetitive sequence polymerase chain reaction (IRS-PCR) has become a powerful tool for the rapid generation of DNA probes from human chromosomes present in rodent somatic cell hybrids. We have constructed a somatic cell hybrid containing a major portion of the mouse X chromosome in a human background (clone 8.0). IRS-PCR was developed for the specific amplification of mouse DNA using either of two primers from the rodent-specific portion of the murine B1 repeat. Amplification was subsequently performed with clone 8.0 and a subclone, 8.1/1, which retains a small murine X-chromosomal fragment including Hprt and the Gdx locus. A total of 15-20 discrete PCR products ranging in size from less than 500 to greater than 3000 bp were obtained from clone 8.0 with each primer. In clone 8.1/1, a subset of these bands plus some additional bands were observed. Nine bands amplified from clone 8.1/1 have been excised from gels and used as probes on Southern blots. All of the fragments behaved as single-copy probes and detected domesticus/spretus variation. They have been regionally mapped using an interspecific backcross. The probe locations are compatible with those of markers known to be present in clone 8.1/1. These results demonstrate the feasibility of this method as applied to the mouse genome and the high likelihood of generating useful DNA probes from a targeted region.  相似文献   

9.
M S Sidhu  B K Helen  R S Athwal 《Genomics》1992,14(3):728-732
We describe here a method for DNA fingerprinting of human chromosomes by Alu-polymerase chain reaction (PCR) amplification of DNA from monochromosomal hybrids, following digestion with restriction endonucleases. DNA digestion with restriction enzymes prior to PCR amplification reduces the total number of amplified fragments. The number and pattern of bands of PCR products observed in an electrophoretic medium are chromosome specific and provide a "fingerprint signature" for individual human chromosomes. Using this approach, we have produced fingerprints for human chromosomes 2, 5, 7, 9, and 12. The applicability of this approach to chromosome identification was assessed by comparing the fingerprints obtained for two different hybrids containing chromosome 7. DNA fragments specific for the long and the short arms of human chromosome 12 have also been identified. In addition, Alu-PCR-generated DNA fragments, specific for different chromosomes, were used to probe Southern blots of a hybrid cell panel to identify human chromosomes present in hybrid cell lines. The chromosomal specificity of these probes permits the identification of intact as well as rearranged chromosomes composed of segments arising from more than one chromosome.  相似文献   

10.
The pig chromosome complement of six different types of pig-rodent hybrid cell lines was examined by means of fluorescence in situ hybridization with a porcine SINE probe. The cell lines were obtained by fusing pig lymphocytes with cells of the Chinese hamster cell lines wg3h, BK14-150 and E36, and of the mouse cell lines NSO, PU and LMTK-. The hybrids were analysed with respect to: (1) the number of pig chromosomes, (2) the type of pig chromosomes, (3) the occurrence of pig-rodent chromosome trans-locations, and (4) the presence of pig chromsome fragments. The results show that the number of pig chromosomes varied within and among hybrid cell lines. The pig-hamster hybrids mainly retained nontelocentric pig chromosomes, whereas the pig-mouse hybrids also retained telocentric pig chromosomes. Pig-rodent chromosome translocations were found in all types of hybrids, but the incidence was in general low. Chromosome fragments were abundant in BK14-150 hybrids, and rare in most other hybrid cell lines. It is concluded that the SINE probe is a useful tool to make a preliminary characterization of the porcine chromosome complement of pig-rodent somatic cell hybrids. The results of this characterization can be used to select hybrids for further cytogenetic analysis. Furthermore, our data show that different rodent cell lines will have to be used as fusion partners for the production of hybrids when constructing a panel informative for all pig chromosomes.  相似文献   

11.
A human serum amyloid A (SAA) cDNA was used as a probe in chromosome mapping studies to detect human SAA gene sequences in DNA isolated from human/mouse somatic cell hybrids. Southern analysis of DNA from 20 hybrid cell lines, including some with translocations of human chromosomes, placed the SAA gene(s) in the p11----pter region of chromosome 11. Screening of human DNA from unrelated individuals by Southern analysis using the SAA cDNA probe revealed restriction fragment polymorphisms for HindIII and PstI. An analysis of the segregation of these polymorphisms with other markers on the short arm of chromosome 11 should more precisely map the SAA gene(s).  相似文献   

12.
Human DNA restriction fragments containing high numbers of Alu repeat sequences can be preferentially detected in the presence of other human DNA restriction fragments in DNA from human:rodent somatic cell hybrids when the DNA is fragmented with enzymes that cleave mammalian DNA infrequently. This ability to lower the observed human DNA complexity allowed us to develop an approach to order rapidly somatic hybrid cell lines retaining overlapping human genomic domains. The ordering process also generates a relative physical map of the human fragments detected with Alu probe DNA. This process can generate physical mapping information for human genomic domains as large as an entire chromosome (100,000 kb). The strategy is demonstrated by ordering Alu-detected NotI fragments in a panel of mouse:human hybrid cells that span the entire long arm of human chromosome 17.by L. Manuelidis  相似文献   

13.
Isolation of polymorphic DNA segments from human chromosome 21.   总被引:23,自引:2,他引:21       下载免费PDF全文
A somatic cell hybrid line containing only human chromosome 21 on a mouse background has been used as the source of DNA for construction of a recombinant phage library. Individual phages containing human inserts have been identified. Repeat-free human DNA subclones have been prepared and used to screen for restriction fragment length polymorphisms to provide genetic markers on chromosome 21. Nine independently isolated clones used as probes identified a total of 11 new RFLPs. Four of the DNA probes recovered from the library have been mapped unequivocally to chromosome 21 using a panel of somatic cell hybrid lines. A fifth probe detected an RFLP on chromosome 21 as well as sequences on other chromosomes. This set of RFLPs may now form the basis for construction of a genetic linkage map of human chromosome 21.  相似文献   

14.
We sequenced the alphoid centromere probe p10RP8 (D10Z1), aligned it to three published consensus sequences, and developed a sequence-tagged site (STS), sJRH-2, based upon oligonucleotide primers having two 3 mismatches with these consensus sequences. Polymerase chain reaction (PCR) amplification using genomic DNA from a somatic cell hybrid panel representing all human chromosomes demonstrated amplification from only those cell lines containing chromosome 10. Fluorescence in situ hybridization of the amplified product demonstrated intense and specific hybridization of the PCR product to 10p11.1-q11.1. A human genomic yeast artificial chromosome (YAC) library was screened using the sJRH-2 PCR assay, and five clones were identified. Sequence analysis of one chimeric clone (consisting of DNA segments derived from chromosomes 5p and 10cen) confirmed specificity of the STS for the centromere of chromosome 10. sJRH-2 provides a convenient cytogenetic marker for chromosome 10, which will also be useful for physical mapping of the pericentromeric region of chromosome 10, a region that harbors the gene(s) for three forms of multiple endocrine neoplasia (types 2A, 2B, and familial medullary thyroid carcinoma). The GenBank accession number for the p10RP8 sequence is X63622.  相似文献   

15.
Using degenerate primer amplification of chromosomes microdissected from banded cytogenetic preparations, we constructed both whole chromosome painting probes for mouse Chromosomes (Chrs) 1, 2, 3, and 11 and a centromere probe that strongly paints most mouse centromeres. We also amplified a Robertsonian translocation chromosome microdissected from unstained preparations to construct a painting probe for Chrs 9 and 19. The chromosomes probes uniformly painted the respective chromosomes of origin. We demonstrated the utility of the Chr 11 probe in aberration analysis by staining mutants that we had previously identified as containing a Chr 11 translocation, and in some mutant cell lines we observed chromosome rearrangements not previously detected in stained cytogenetic preparations. The technology of microdissection and amplification applies to all mouse chromosomes or to specific subchromosomal regions and will be useful in mouse genetics, in aberration analysis, and for chromosome identification.  相似文献   

16.
We report here an Alu-(CAG/GTC)n PCR method for the cloning of STSs with (CAG/GTC)n sequences. We have applied this method to genomic DNA of a somatic cell hybrid containing human chromosome 12 where linkage has been found for a known familiar dominant ataxia (SCA2), which is thought to be due to a (CAG/GTC)n expansion. We have isolated several clones containing (CAG/GTC)n sequences, which include previously identified sequences that map to chromosome 12. This method could be a new PCR approach for the cloning of repeats based on their proximity to Alu sequences.  相似文献   

17.
The dominant selectable gene, Ecogpt, has been introduced, by the calcium phosphate precipitation technique, into normal human fibroblasts, along with the SV40 early region genes. In one transfectant clone, integration of these sequences into human chromosome 17 was demonstrated by the construction of human-mouse somatic cell hybrids, selected for by growth in medium containing mycophenolic acid and xanthine. A whole cell hybrid, made between the human transfectant and a mouse L cell, was used as donor of the Ecogpt-carrying human chromosome 17 to 'tribrids' growing in suspension, made by whole cell fusion between a mouse thymoma cell line, and to microcell hybrids made with a mouse teratocarcinoma cell line. Two tribrids contained karyotypically normal human chromosomes 17 and a small number of other human chromosomes, while a third tribrid had a portion of the long arm of chromosome 17 translocated to mouse as its only human genetic material. Two independent microcell hybrids contained a normal chromosome 17 and no other human chromosome on a mouse teratocarcinoma background. These experiments demonstrate the ability to construct human-mouse somatic cell hybrids using a dominant selection system. By applying this approach it should be possible to select for a wide range of different human chromosomes in whole cell and microcell hybrids. In particular, transfer of single human chromosomes to mouse teratocarcinoma cells will allow examination of developmentally regulated human gene sequences after differentiation of such hybrids.  相似文献   

18.
We have employed a pulsed field gel electrophoresis and Alu hybridization approach for identification of large restriction fragments on chromosome 6 and 22. This technique allows large portions of selected human chromosomes to be visualized as discrete hybridization signals. Somatic cell hybrid DNA which contains chromosome 6 or chromosome 22 was restricted with either Notl or Mlul. The restriction fragments were separated by pulsed field gel electrophoresis (PFGE) and hybridized against an Alu repetitive sequence (Blur 8). The hybridization signals result in a fingerprint-like pattern which is unique for each chromosome and each restriction enzyme. In addition, a continuous pattern of restriction fragments was demonstrated by gradually increasing puls times. This approach will also be suitable to analyze aberrant human chromosomes retained in somatic cell hybrids and can be used to analyze flow sorted human chromosomes. To this end, our method provides a valuable alternative to standard cytogenetic analysis.  相似文献   

19.
The polymerase chain reaction (PCR) technique was used to generate a unique probe complementary to the hydrophobic 5' end of the human cyclophilin B gene. This unique probe was hybridized to DNAs from human x hamster hybrid somatic cell lines retaining different combinations of human chromosomes. The gene was assigned to chromosome 15.  相似文献   

20.
The human genome carries multiple copies of sequences related to endogenous retroviral genomes that include long terminal repeat (LTR) sequences. We used the LTR of one such viral genome, called HERV-A, as a probe in Southern analysis to examine the distribution profiles of the hybridizing DNA in the genomes of twelve human x rodent hybrid cell lines carrying one or a few human chromosomes, and in the DNA samples prepared from six sorted, individual chromosomes. The HERV-A sequence was found to be widely distributed among different chromosomes and the Southern patterns for chromosomes 5, the X, and the Y, each obtained in duplicate from independently prepared cell lines or sorted chromosomes, were matched. Chromosome-specific Southern profiles can be used to monitor chromosomes in hybrid cells or to characterize chromosome aberrations, such as deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号