首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The N-terminal fragment of AR containing the expanded polyglutamine tract aggregates in cytoplasm and/or in nucleus and induces cell death. Some chaperones such as Hsp40 and Hsp70 have been identified as important regulators of polyglutamine aggregation and/or cell death in neuronal cells. Recently, Hsp105alpha, expressed at especially high levels in mammalian brain, has been shown to suppress apoptosis in neuronal cells and prevent the aggregation of protein caused by heat shock in vitro. However, its role in polyglutamine-mediated cell death and toxicity has not been studied. In the present study, we examined the effects of Hsp105alpha on the aggregation and cell toxicity caused by expansion of the polyglutamine tract using a cellular model of SBMA. The transient expression of truncated ARs (tARs) containing an expanded polyglutamine tract caused aggregates to form in COS-7 and SK-N-SH cells and concomitantly apoptosis in the cells with the nuclear aggregates. When Hsp105alpha was overexpressed with tAR97 in the cells, Hsp105alpha was colocalized to aggregates of tAR97, and the aggregation and cell toxicity caused by expansion of the polyglutamine tract were markedly reduced. Both beta-sheet and alpha-helix domains, but not the ATPase domain, of Hsp105alpha were necessary to suppress the formation of aggregates in vivo and in vitro. Furthermore, Hsp105alpha was found to localize in nuclear inclusions formed by ARs containing an expanded polyglutamine tract in tissues of patients and transgenic mice with SBMA. These findings suggest that overexpression of Hsp105alpha suppresses cell death caused by expansion of the polyglutamine tract without chaperone activity, and the enhanced expression of the essential domains of Hsp105alpha in brain may provide an effective therapeutic approach for CAG repeat diseases.  相似文献   

2.
Polyglutamine protein aggregation is associated with eight inherited neurodegenerative disorders. In Huntington's disease, N-terminal fragments of mutant huntingtin form intracellular aggregates and mediate cellular toxicity. Recent studies have shown that chaperones inhibit polyglutamine-mediated aggregation and cellular toxicity. Because chaperones also inhibit caspase activation to protect cells from death, it remains unclear whether the protective effect of chaperones on polyglutamine-mediated cellular toxicity is dependent on their inhibition of protein aggregation. In this study, we show that several chaperones including HSP 40, HSP 70, and N-ethylmaleimide-sensitive factor can inhibit cellular toxicity caused by N-terminal mutant huntingtin fragments. However, only HSP 40 is able to inhibit huntingtin aggregation. Furthermore, time-course study suggests that the protection of chaperones against huntingtin toxicity is not the result of their suppression of huntingtin aggregation. Chaperones inhibit caspase-3 and caspase-9 activation mediated by mutant huntingtin, and this inhibition is independent of huntingtin aggregation. We propose that the inhibition of caspase activity by chaperones is involved in their suppression of polyglutamine toxicity.  相似文献   

3.
4.
Accumulation of ubiquitinated proteins in inclusions is common to various neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis, although it occurs in selective neurons in each disease. The mechanisms generating such abnormal aggregates and their role in neurodegeneration remain unclear. Inclusions appear in familial and non-familial cases of neurodegenerative disorders, suggesting that factors other than particular mutations contribute to protein accumulation and aggregation. Proteasome impairment triggered by aging or conditions such as oxidative stress may contribute to protein accumulation and aggregation in neurodegeneration. To test this hypothesis in mouse neuronal cells, we overexpressed a 20S proteasome beta5 subunit with an active site mutation. The N-terminal threonine to alanine substitution resulted in impairment of the chymotrypsin-like activity, which is a rate-limiting step in protein degradation by the proteasome. The Thr1Ala mutation was not lethal under homeostatic conditions. However, this single amino acid substitution significantly hypersensitized the cells to oxidative stress, triggering not only the accumulation and aggregation of ubiquitinated proteins, including synuclein, but also cell death. Our results demonstrate that this genetic manipulation of proteasome activity involving a single amino acid substitution causes the formation of protein aggregates in stressed neuronal cells independently of the occurrence of mutations in other cellular proteins. These results support the notion that proteasome disruption may be central to the development of familial as well as sporadic cases of neurodegeneration.  相似文献   

5.
The accumulation of intracellular protein deposits as inclusion bodies is the common pathological hallmark of most age-related neurodegenerative disorders including polyglutamine diseases. Appearance of aggregates of the misfolded mutant disease proteins suggest that cells are unable to efficiently degrade them, and failure of clearance leads to the severe disturbances of the cellular quality control system. Recently, the quality control ubiquitin ligase CHIP has been shown to suppress the polyglutamine protein aggregation and toxicity. Here we have identified another ubiquitin ligase, called E6-AP, which is able to promote the proteasomal degradation of misfolded polyglutamine proteins and suppress the polyglutamine protein aggregation and polyglutamine protein-induced cell death. E6-AP interacts with the soluble misfolded polyglutamine protein and associates with their aggregates in both cellular and transgenic mouse models. Partial knockdown of E6-AP enhances the rate of aggregate formation and cell death mediated by the polyglutamine protein. Finally, we have demonstrated the up-regulation of E6-AP in the expanded polyglutamine protein-expressing cells as well as cells exposed to proteasomal stress. These findings suggest that E6-AP is a critical mediator of the neuronal response to misfolded polyglutamine proteins and represents a potential therapeutic target in the polyglutamine diseases.  相似文献   

6.
Huntington's disease (HD) is an inherited progressive neurodegenerative disease caused by the expansion of a polyglutamine repeat sequence within a novel protein. Recent work has shown that abnormal intranuclear inclusions of aggregated mutant protein within neurons is a characteristic feature shared by HD and several other diseases involving glutamine repeat expansion. This suggests that in each of the these disorders the affected nerve cells degenerate as a result of these abnormal inclusions. A transgenic mouse model of HD has been generated by introducing exon 1 of the HD gene containing a highly expanded CAG sequence into the mouse germline. These mice develop widespread neuronal intranuclear inclusions and neurodegeneration specifically within those areas of the brain known to degenerate in HD. We have investigated the sequence of pathological changes that occur after the formation of nuclear inclusions and that precede neuronal cell death in these cells. Although the relation between inclusion formation and neurodegeneration has recently been questioned, a full characterization of the pathways linking protein aggregation and cell death will resolve some of these controversies and will additionally provide new targets for potential therapies.  相似文献   

7.
Increasing evidence suggests that proteasome inhibition plays a causal role in promoting the neurodegeneration and neuron death observed in multiple disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). The ability of severe and acute inhibition of proteasome function to induce neuron death and neuropathology similar to that observed in AD and PD is well documented. However, at present the effects of chronic low-level proteasome inhibition on neural homeostasis has not been elucidated. In order to determine the effects of chronic low-level proteasome inhibition on neural homeostasis, we conducted studies in individual colonies of neural SH-SY5Y cells that were isolated following continual exposure to low concentrations (100 nm) of the proteasome inhibitor MG115. Clonal cell lines appeared morphologically similar to control cultures but exhibited significantly different rates of both proliferation and differentiation. Elevated levels of protein oxidation and protein insolubility were observed in clonal cell lines, with all clonal cell lines being more resistant to neural death induced by serum withdrawal and oxidative stress. Interestingly, clonal cell lines demonstrated evidence for increased macroautophagy, suggesting that chronic low-level proteasome inhibition may cause an excessive activation of the lysosomal system. Taken together, these data indicate that chronic low-level proteasome inhibition has multiple effects on neural homeostasis, and suggests that studying the effects of chronic low-level proteasome inhibition may be useful in understanding the relationship between protein oxidation, protein insolubility, proteasome function, macroautophagy and neural viability in AD and PD.  相似文献   

8.
Bcl-2 family proteins regulate cell death through the mitochondrial apoptotic pathway. Here, we show that the Drosophila Bax-like Bcl-2 family protein Drob-1 maintains mitochondrial function to protect cells from neurodegeneration. A pan-neuronal knockdown of Drob-1 results in lower locomotor activity and a shorter lifespan in adult flies. Either the RNAi-mediated downregulation of Drob-1 or overexpression of Drob-1 antagonist Buffy strongly enhances the polyglutamine-induced accumulation of ubiquitinated proteins and subsequent neurodegeneration. Furthermore, ectopic expression of Drob-1 suppresses the neurodegeneration and premature death of flies caused by expanded polyglutamine. Drob-1 knockdown decreases cellular ATP levels, and enhances respiratory inhibitor-induced mitochondrial defects such as loss of membrane potential (Deltapsim), morphological abnormalities, and reductions in activities of complex I+III and complex II+III, as well as cell death. Taken together, these results suggest that Drob-1 is essential for neuronal cell function, and that Drob-1 protects neurons from expanded polyglutamine-mediated neurodegeneration through the regulation of mitochondrial homeostasis.  相似文献   

9.
CHIP (C terminus of Hsc-70 interacting protein) is an E3 ligase that links the protein folding machinery with the ubiquitin-proteasome system and has been implicated in disorders characterized by protein misfolding and aggregation. Here we investigate the role of CHIP in protecting from ataxin-1-induced neurodegeneration. Ataxin-1 is a polyglutamine protein whose expansion causes spinocerebellar ataxia type-1 (SCA1) and triggers the formation of nuclear inclusions (NIs). We find that CHIP and ataxin-1 proteins directly interact and co-localize in NIs both in cell culture and SCA1 postmortem neurons. CHIP promotes ubiquitination of expanded ataxin-1 both in vitro and in cell culture. The Hsp70 chaperone increases CHIP-mediated ubiquitination of ataxin-1 in vitro, and the tetratricopeptide repeat domain, which mediates CHIP interactions with chaperones, is required for ataxin-1 ubitiquination in cell culture. Interestingly, CHIP also interacts with and ubiquitinates unexpanded ataxin-1. Overexpression of CHIP in a Drosophila model of SCA1 decreases the protein steady-state levels of both expanded and unexpanded ataxin-1 and suppresses their toxicity. Finally we investigate the ability of CHIP to protect against toxicity caused by expanded polyglutamine tracts in different protein contexts. We find that CHIP is not effective in suppressing the toxicity caused by a bare 127Q tract with only a short hemagglutinin tag, but it is very efficient in suppressing toxicity caused by a 128Q tract in the context of an N-terminal huntingtin backbone. These data underscore the importance of the protein framework for modulating the effects of polyglutamine-induced neurodegeneration.  相似文献   

10.
Polyglutamine expansions in certain proteins are the genetic determinants for nine distinct progressive neurodegenerative disorders and resultant age-related dementia. In these cases, neurodegeneration is due to the aggregation propensity and resultant toxic properties of the polyglutamine-containing proteins. We are interested in elucidating the underlying mechanisms of toxicity of the protein ataxin-3, in which a polyglutamine expansion is the genetic determinant for Machado-Joseph Disease (MJD), also referred to as spinocerebellar ataxia 3 (SCA3). To this end, we have developed a novel model for ataxin-3 protein aggregation, by expressing a disease-related polyglutamine-containing fragment of ataxin-3 in the genetically tractable body wall muscle cells of the model system C. elegans. Here, we demonstrate that this ataxin-3 fragment aggregates in a polyQ length-dependent manner in C. elegans muscle cells and that this aggregation is associated with cellular dysfunction. However, surprisingly, this aggregation and resultant toxicity was not influenced by aging. This is in contrast to polyglutamine peptides alone whose aggregation/toxicity is highly dependent on age. Thus, the data presented here not only describe a new polyglutamine model, but also suggest that protein context likely influences the cellular interactions of the polyglutamine-containing protein and thereby modulates its toxic properties.  相似文献   

11.
The autoxidation and enzymatic catabolism of dopamine results in the generation of reactive oxygen species (ROS), which may possibly contribute to oxidative stress in multiple neurodegenerative disorders. Recent studies indicate that proteasome inhibition occurs in numerous neurodegenerative conditions, possibly as the result of oxidative stress, although the effects of dopamine on proteasome activity have not been determined. In the present study we examined the effects of dopamine on proteasome activity in the neural PC12 cell line. Application of dopamine induced a dose- and time-dependent decrease in proteasome activity, which occurred prior to cell death. Application of an antioxidant (gluthathione monoethyl ester), monoamine oxidase inhibitors (deprenyl, clogyline, paragyline), or an inhibitor of dopamine uptake (nomifensine) attenuated dopamine toxicity and dopamine-induced proteasome impairment. Application of the proteasome inhibitor lactacystin increased the toxicity of dopamine and the levels of protein oxidation following administration of dopamine. Together, these data indicate that dopamine induces proteasome inhibition that is dependent, in part, on ROS and dopamine uptake, and suggest a possible role for proteasome inhibition in dopamine toxicity.  相似文献   

12.
13.
Neurodegenerative diseases are characterized by intra- and/or extracellular protein aggregation and oxidative stress. Intense attention has been paid to whether protein aggregation itself contributes to abnormal production of free radicals and ensuing cellular oxidative damage. Although this question has been investigated in the context of extracellular protein aggregation, it remains unclear whether protein aggregation inside cells alters the redox homeostasis. To address this, we have used in vitro and in vivo (cellular) models of Huntington disease, one of nine polyglutamine (poly(Q)) disorders, and examined the causal relationship among intracellular protein aggregation, reactive oxygen species (ROS) production, and toxicity. Live imaging of cells expressing a fragment of huntingtin (httExon1) with a poly(Q) expansion shows increased ROS production preceding cell death. ROS production is poly(Q) length-dependent and not due to the httExon 1 flanking sequence. Aggregation inhibition by the MW7 intrabody and Pgl-135 treatment abolishes ROS production, showing that increased ROS is caused by poly(Q) aggregation itself. To examine this hypothesis further, we determined whether aggregation of poly(Q) peptides in vitro generated free radicals. Monitoring poly(Q) protein aggregation using atomic force microscopy and hydrogen peroxide (H(2)O(2)) production over time in parallel we show that oligomerization of httEx1Q53 results in early generation of H(2)O(2). Inhibition of poly(Q) oligomerization by the single chain antibody MW7 abrogates H(2)O(2) formation. These results demonstrate that intracellular protein aggregation directly causes free radical production, and targeting potentially toxic poly(Q) oligomers may constitute a therapeutic target to counteract oxidative stress in poly(Q) diseases.  相似文献   

14.
To elucidate the intrinsic mechanisms of neurotoxicity induction, including those underlying neural cell death and neurodegeneration, we developed a gain-of-function screen for gene products causing neural cell loss. To identify novel genes with a cell-death-related function in neurons, we screened 4,964 Drosophila GS lines, in which one or two genes from much of the Drosophila genome can be overexpressed. Approximately 0.68% of the GS lines produced phenotypes involving a loss of postmitotic neurons. Of these, we identified and characterized the endd2 gene, which encodes the Drosophila ortholog of Sec61alpha (DSec61alpha), an endoplasmic reticulum protein with protein translocation activity. Ectopic expression of DSec61alpha caused neural cell death accompanied by the accumulation of ubiquitinated proteins, which was mediated by DSec61alpha's translocon activity. This supported our previous observation that the DSec61alpha translocon contributes to expanded polyglutamine-mediated neuronal toxicity, which is also associated with ubiquitinated protein accumulation. These data suggest that the translocon may be a novel component of neural cell death and degeneration pathways. Our approach can be used to identify potential neurotoxic factors within the whole genome, which will increase our understanding of the molecular mechanisms of various types of cell death, including those associated with human neurodegenerative diseases.  相似文献   

15.
Protein aggregation has been proved to be a pathological basis accounting for neuronal death caused by either transient global ischemia or oxygen glucose deprivation (OGD), and inhibition of protein aggregation is emerging as a potential strategy of preventing brain damage. Trehalose was found to inhibit protein aggregation caused by neurodegenerative diseases via induction of autophagy, whereas its effect is still elusive on ischemia-induced protein aggregation. In this study, we investigated this issue by using rat model of transient global ischemia and SH-SY5Y model of OGD. We found that pretreatment with trehalose inhibited transient global ischemia-induced neuronal death in the hippocampus CA1 neurons and OGD-induced death in SH-SY5Y cells, which was associated with inhibition of the formation of ubiquitin-labeled protein aggregates and preservation of proteasome activity. In vitro study showed that the protection of trehalose against OGD-induced cell death and protein aggregation in SH-SY5Y cells was reversed when proteasome activity was inhibited by MG-132. Further studies revealed that trehalose prevented OGD-induced reduction of proteasome activity via suppression of both oxidative stress and endoplasmic reticulum stress. Particularly, our results showed that trehalose inhibited OGD-induced autophagy. Therefore, we demonstrated that proteasome dysfunction contributed to protein aggregation caused by ischemic insults and trehalose prevented protein aggregation via preservation of proteasome activity, not via induction of autophagy.  相似文献   

16.

Background

Misfolding- and aggregation-prone proteins underlying Parkinson''s, Huntington''s and Machado-Joseph diseases, namely α-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.

Methodology/Principal Findings

Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of α-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.

Conclusions/Significance

These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases.  相似文献   

17.
Numerous studies suggest that proteasome inhibition may play a causal role in mediating the increased levels of protein oxidation and neuron death observed in conditions associated with oxidative stress. In the present study we demonstrate that administration of non-toxic levels of oxidative stress does not result in impairment of 20S/26S proteasome activity, and actually increases the expression of specific proteasome subunits. Non-toxic levels of oxidative stress were observed to elevate the amount of protein oxidation in the presence of preserved proteasomal function, suggesting that proteasome inhibition may not mediate increases in protein oxidation following low-level oxidative stress. Preserving basal proteasome function appears to be critical to preventing the neurotoxicity of low-level oxidative stress, based on the ability of proteasome inhibitor treatment to exacerbate oxidative stress toxicity. Taken together, these data indicate that maintaining neural proteasome function may be critical to preventing neurotoxicity, but not the increase in protein oxidation, following low-level oxidative stress.  相似文献   

18.
Deposition of misfolded proteins with a polyglutamine expansion is a hallmark of Huntington disease and other neurodegenerative disorders. Impairment of the proteolytic function of the proteasome has been reported to be both a cause and a consequence of polyglutamine accumulation. Here we found that the proteasomal chaperones that unfold proteins to be degraded by the proteasome but also have non-proteolytic functions co-localized with huntingtin inclusions both in primary neurons and in Huntington disease patients and formed a complex independently of the proteolytic particle. Overexpression of Rpt4 or Rpt6 facilitated aggregation of mutant huntingtin and ataxin-3 without affecting proteasomal degradation. Conversely, reducing Rpt6 or Rpt4 levels decreased the number of inclusions in primary neurons, indicating that endogenous Rpt4 and Rpt6 facilitate inclusion formation. In vitro reconstitution experiments revealed that purified 19S particles promote mutant huntingtin aggregation. When fused to the ornithine decarboxylase destabilizing sequence, proteins with expanded polyglutamine were efficiently degraded and did not aggregate. We propose that aggregation of proteins with expanded polyglutamine is not a consequence of a proteolytic failure of the 20S proteasome. Rather, aggregation is elicited by chaperone subunits of the 19S particle independently of proteolysis.  相似文献   

19.
Huntington's disease (HD) is an inherited neurodegenerative disorder. Here we demonstrate that expression of arfaptin 2/POR1 (partner of Rac1) in cultured cells induces the formation of pericentriolar and nuclear aggregates, which morphologically resemble mutant huntingtin aggregates characteristic of HD. Endogenous arfaptin 2 localizes to aggregates induced by expression of an abnormal amino-terminal fragment of huntingtin that contains polyglutamine (polyQ) expansions. A dominant inhibitory mutant of arfaptin 2 inhibits aggregation of mutant huntingtin, but not in the presence of proteasome inhibitors. Using cell-free biochemical assays, we show that arfaptin 2 inhibits proteasome activity. Finally, we show that expression of arfaptin 2 is increased at sites of neurodegeneration and the protein localizes to huntingtin aggregates in HD transgenic mouse brains. Our data suggest that arfaptin 2 is involved in regulating huntingtin protein aggregation, possibly by impairing proteasome function.  相似文献   

20.
Huntington''s Disease (HD) is a neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in huntingtin (htt) protein. The expansion leads to increased htt aggregation and toxicity. Factors that aid in the clearance of mutant huntingtin proteins should relieve the toxicity. We previously demonstrated that overexpression of ubiqulin-1, which facilitates protein clearance through the proteasome and autophagy pathways, reduces huntingtin aggregates and toxicity in mammalian cell and invertebrate models of HD. Here we tested whether overexpression of ubiquilin-1 delays or prevents neurodegeneration in R6/2 mice, a well-established model of HD. We generated transgenic mice overexpressing human ubiquilin-1 driven by the neuron-specific Thy1.2 promoter. Immunoblotting and immunohistochemistry revealed robust and widespread overexpression of ubiquilin-1 in the brains of the transgenic mice. Similar analysis of R6/2 animals revealed that ubiquilin is localized in huntingtin aggregates and that ubiquilin levels decrease progressively to 30% during the end-stage of disease. We crossed our ubiquilin-1 transgenic line with R6/2 mice to assess whether restoration of ubiquilin levels would delay HD symptoms and pathology. In the double transgenic progeny, ubiquilin levels were fully restored, and this correlated with a 20% increase in lifespan and a reduction in htt inclusions in the hippocampus and cortex. Furthermore, immunoblots indicated that endoplasmic reticulum stress response that is elevated in the hippocampus of R6/2 animals was attenuated by ubiquilin-1 overexpression. However, ubiquilin-1 overexpression neither altered the load of htt aggregates in the striatum nor improved motor impairments in the mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号