首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long history of human influence on northern temperate landscapes has created a mosaic of successional stages, from closed forest to open grassland. Various species thus adapted to different habitats and it is interesting to explore how these differences in species composition among particular successional stages translate into differences at the community level. For this purpose, we surveyed breeding birds in 233 patches of five different habitats covering a gradient from bare ground to forest in 29 abandoned military training sites scattered throughout the Czech Republic. Linear mixed effects modelling revealed that late-successional habitats (dense scrubland and forest) were the most species-rich, whereas early-successional stages hosted bird communities with the highest habitat specialization and threat level. These results suggest that the habitats of late-successional stages are important for the maintenance of high bird species richness, but that early-successional habitats are essential for highly specialized and threatened bird species. Given the highly adverse impacts of agricultural intensification and land abandonment on open habitats, it is necessary to promote factors creating initial successional stages suitable for specialized and threatened species.  相似文献   

2.
We studied how forest fire affects the structure of ant communities in the long term and how microhabitat variables that influence communities of ants in different succession stages change. For this purpose, we selected five sites burnt 3 to 26 years prior to the study and a control site unburnt for at least 50 years. Sampling of ants was conducted in four pit-fall traps in four transects in three replication plots at every successional site and in two plots at the control site. Microhabitat variables regarding the vegetation structure and litter layers were recorded and related to the abundances of ants. The results show that subshrubs, leaves, and needles were the most important microhabitat variables that affected the ant communities. In certain ant genera, significant changes depending upon successional gradient were determined. While the genera Aphaenogaster and Cataglyphis had non-linear relationships with successional gradient, negative linear relationships were found in Crematogaster and Prenolepis. Messor is the only genus caught in high numbers in the earliest successional stage. It showed a decrease with successional gradient. Significant changes in ant communities along the successional gradient were associated with the characteristics of vegetation and the litter layer.  相似文献   

3.
Rates of change in tree communities following major disturbances are determined by a complex set of interactions between local site factors, landscape history and structure, regional species pools and species life histories. Our analysis focuses on vegetation change following abandonment of agricultural fields or pastures, as this is the most extensive form of major disturbance in Neotropical forests. We consider five tree community attributes: stem density, basal area, species density, species richness and species composition. We describe two case studies, in northeastern Costa Rica and Chiapas, Mexico, where both chronosequence and annual tree dynamics studies are being applied. These case studies show that the rates of change in tree communities often deviate from chronosequence trends. With respect to tree species composition, sites of different ages differ more than a single site followed over time through the same age range. Dynamic changes in basal area within stands, on the other hand, generally followed chronosequence trends. Basal area accumulation was more linked with tree growth rates than with net changes in tree density due to recruitment and mortality. Stem turnover rates were poor predictors of species turnover rates, particularly at longer time-intervals. Effects of the surrounding landscape on tree community dynamics within individual plots are poorly understood, but are likely to be important determinants of species accumulation rates and relative abundance patterns.  相似文献   

4.
5.
Aim of the research was the recognition of ecological species groups in beech forests south of the Caspian Sea (Northern Iran) and the determination of the main effective environmental factors explaining the distribution of plant ecological groups. Selective stratification sampling was used to locate samples. A total of 120 samples (400 m2 each) were selected in Fagetum communities within the study area. At each sample, a floristic list of the plot and an estimate of percent cover and abundance of all vascular plants were recorded in separate strata using the Braun-Blanquet scale. At the center of each vegetation plot, two soil samples were taken of 0–10 and 10–30 cm depth levels for physico-chemical analyses. Cluster analysis was used for the classification of vegetation samples and Multi-response Permutation Procedure (MRPP) was used to test the hypothesis of no difference between ecological groups in the species space. Indicator species analysis was used to identify indicator species for each group. A Tukey test was used to compare environmental variables among groups. Detrended Correspondence Analysis (DCA) was used to analyze the relationships between the ecological groups and environmental variables.  相似文献   

6.
Forest stand development was simulated using a forest succession model of the JABOWA/FORET type. The environmental conditions are representative for a wide spectrum of Swiss forest sites ranging from 220 m to 1 700 m a.s.l. Each model run covers a period of 1 200 yr and is based on the averaged successional characteristics of 50 forest plots with an individual size of 1/12 ha. These small forest plots serve as basic units to simulate establishment, growth, and death of individual trees of 29 species. Existing light in the forest stand, climatic conditions, soil properties, and other environmental factors control the growth of each individual tree. Compared with previous simulation studies, some major modifications were made, including the incorporation of the indicator values of Ellenberg (1979) to describe the ecophysiological behaviour of the species considered. As a test, the simulated species composition through time was compared with the actual vegetation and the potentially natural species composition on the corresponding site types. The extensive comparison revealed that approximately 80% of the simulations match the expected species configurations. Thus, it was concluded that the model is valid for the purpose of evaluating impacts of natural and human disturbances on forest communities.  相似文献   

7.
Understanding the recovery dynamics of ecosystems presents a major challenge in the human-impacted tropics. We tested whether secondary forests follow equilibrium or non-equilibrium dynamics by evaluating community reassembly over time, across different successional stages, and among multiple life stages. Based on long-term and static data from six 1-ha plots in NE Costa Rica, we show that secondary forests are undergoing reassembly of canopy tree and palm species composition through the successful recruitment of seedlings, saplings, and young trees of mature forest species. Such patterns were observed over time within sites and across successional stages. Floristic reassembly in secondary forests showed a clear convergence with mature forest community composition, supporting an equilibrium model. This resilience stems from three key factors co-occurring locally: high abundance of generalist species in the regional flora, high levels of seed dispersal, and local presence of old-growth forest remnants.  相似文献   

8.
Aims Studying plant ecological succession provides insights into the spatiotemporal processes underlying community assembly and is of primary importance for restoration ecology. We investigate here colonization events and local community assembly over an original primary succession occurring on roadcuts after roadwork. For this, we addressed both the changes in species presence-absence (incidence data) to highlight pre-establishment filters and in species relative abundances to further assess the influence of local biotic processes.Methods We studied 43 limestone roadcuts in Mediterranean France, covering five age classes up to an age of 80 years, along with 13 natural cliffs as a reference, and we counted 14322 plant individuals on these sites. We applied a constrained nonsymmetric correspondence analysis of both the incidence (presence-absence) and abundance data to assess the variation of these data along the chronosequence.Important findings Along the first 30 years, the initially abundant short-lived species declined both in terms of incidence and abundance and were replaced by longer lived herbaceous and woody species. This first phase was characterized by species that are widespread in the surrounding scrublands and was comparable to an early secondary succession there. After 30 years, there were continuing changes in incidence data with age, but no more significant change in species' abundances. This second phase was marked by the late colonization of specialists that did not become dominant. Although colonization and establishment limitation was thereby apparent for specialist species, a slow convergence of community composition toward the situation of natural cliffs could be detected in the older stages of the chronosequence. These findings convey insights into the natural dynamics of man-made outcrop plant communities and may be useful for the ecological management and restoration of such contexts. It also illustrates the interest of comparing incidence and abundance data to investigate the relative influence of ecological determinants on the assembly of plant communities.  相似文献   

9.
Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.  相似文献   

10.
The relatively low biodiversity and simple hydrodynamics make solar salt ponds ideal sites for ecological studies. We have studied the ecological gradient of the primary ponds at the Shark Bay Resources solar salt ponds, Western Australia, using a coupled hydrodynamic ecological numerical model, DYRESM–CAEDYM. Seven ponds representative of the primary system were simulated with salinity ranging from 45 to 155 ppt. Five groups of organisms were simulated: three phytoplankton, one microbial mat plankton, and one zooplankton as well as dissolved inorganic and particulate organic nitrogen, phosphorus, and carbon. By extracting the various carbon fluxes from the model, we determined the role that the introduced zooplankton, Artemia sp., plays in grazing the particulate organic carbon (POC) from the water column in the high salinity ponds. We also examined the nutrient fluxes and stoichiometric ratios of the various organic components for each pond to establish the extent to which observed patterns in nutrient dynamics are mediated by the presence of Artemia sp. Model results indicated that Artemia sp. grazing was responsible for reduced water column POC in the higher salinity ponds. This resulted in an increase in photosynthetic available radiation (PAR) reaching the pond floor and consequent increase in microbial mat biomass, thus demonstrating the dual benefits of Artemia sp. to salt production in improved quality and quantity. In contrast, this study found no direct link between Artemia sp. and observed changes in planktonic algal species composition or nutrient limitation across the salinity gradient of the ponds. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

11.
Nitrogen is often a limiting factor to net primary productivity (NPP) and other processes in terrestrial ecosystems. In most temperate freshwater ecosystems, when nitrogen becomes limiting to NPP, populations of N-fixing cyanobacteria experience a competitive advantage, and begin to grow and fix nitrogen until the next most limiting resource is encountered; typically phosphorus or light. Why is it that N-fixing plants do not generally function to overcome N limitation in terrestrial ecosystems in the same way that cyanobacteria function in aquatic ecosystems? To address this question in a particular ecosystem, one must first know whether the flora includes a potential set of nitrogen fixers. I suggest that the presence or absence of N-fixing plant symbioses is foremost an evolutionary consideration, determined to a large extent by constraints on the geographical radiation of woody members of the family Fabaceae. Ecological factors such as competition, nutrient deficiencies, grazing and fire are useful to explain the success of N-fixing plants only when considered against the geographical distribution of potential N-fixers.  相似文献   

12.
We repeated bird and vegetation surveys in 1991–1992 and 2005–2006 among young managed stands and old-growth forests in southeast Alaska to evaluate whether pre-commercial thinning of managed stands influenced the bird community. We compared decadal changes in bird densities and forest vegetation among 3 stand types: managed stands originating from clearcuts 35 years ago that were left untreated (unthinned), managed stands thinned at uniform spacing (thinned), and old growth with no prior timber harvest. We did not detect differences in decadal trends in avian densities between thinned and unthinned stands for 15 of 16 common bird species using a repeated-measures design. Thinning did not result in greater recruitment of overstory-nesting species as predicted. This was likely because of 1) similar increases in tree heights ( = 9–10 m) and canopy cover ( = 29–43%) between unthinned and thinned stands across decades and 2) the relatively young successional stage of these stands, which had only begun to recruit medium and large size conifers (dbh ≥ 36 cm). Decadal trends in densities of most (88%) understory-nesting bird species did not differ between thinned and unthinned stands. Shrub cover decreased by 22% and 31% across decades in thinned and unthinned stands, respectively. Bird community composition in managed stands reflected the general decadal changes in forest vegetation with a shift in dominance from understory species in the early 1990s (80–85% of total bird density) to an equal abundance of understory (45–54%) and overstory species in the mid-2000s. The latter was more similar to old-growth stands, which were dominated by overstory species (67–71%). Overstory-nesting birds in old growth increased in density by 49% across decades. Densities of cavity-nesting species remained unchanged in managed stands and less than densities in old growth across decades, possibly because of a lack of large trees and snags for nest sites. Overall, thinning of clearcut stands, the primary silvicultural system in the region, had few measurable benefits to birds nearly 20 years after treatment. Monitoring over the 70–100-year harvest rotation may be necessary to fully test whether thinning accelerates succession of bird communities in clearcut stands. However, partial harvests that retain large trees and snags should also be explored as alternatives to better maintain late-succession avifauna throughout the harvest rotation in southeast Alaska. © 2012 The Wildlife Society.  相似文献   

13.
14.
15.
Agricultural land abandonment is one of the main drivers of land use change, leading to various responses of farmland ecological communities. In an effort to better understand the effect of agricultural land abandonment on passerine bird communities, we sampled 20 randomly selected sites [1 km × 1 km] in remote Greek mountains, reflecting an abandonment gradient, in terms of forest encroachment. We sampled 169 plots using the point count method of fixed distance (47 passerine species), and we investigated bird diversity and community structure turnover along the gradient. We found that grazing intensity has a beneficial effect hampering forest encroachment that follows progressively land abandonment. Habitat composition changes gradually with forests developing at the expense of open meadows and heterogeneous grasslands. Forest encroachment has a significant negative effect on bird diversity and species richness, affecting in particular typical farmland and Mediterranean shrubland species. Birds form five distinct ecological clusters after land abandonment: species mostly found in pinewoods and cavity-dwelling species; species that prefer open forests forest edges or ecotones; species that prefer shrubland or open habitats with scattered woody vegetation; Mediterranean farmland birds that prefer semi-open habitats with hedges and/or woodlots; and, generalist forest-dwelling or shrubland species. We extracted a set of 22 species to represent the above ecological communities, as a new monitoring tool for agricultural land use change and conservation. We suggest that the maintenance of rural mosaics should be included in the priorities of agricultural policy for farmland bird diversity conservation.  相似文献   

16.
Abstract

The pattern of change in the Holocene forests of Europe is outlined and discussed in the light of external and internal forcing factors. Forests are seen as non-linear, dynamic systems, that are, at any point in time, unique and changing. In the absence of human activity, potential forcing factors during the Holocene include (i) climate, (ii) soil development, and (iii) internal forest dynamics. Climate is influential through exerting control on the floristic pool from which forests developed. Current results indicate that the role of soil development is likely to have been minor, but may have slowed rate of invasion and increase of some mid- and late-Holocene forest dominants. Forest change following spread and increase then forces soil change. Internal processes of forest dynamics include competition among existing species, and interactions between existing species and potential invading species. The patterns of interaction may be detectable through rates of change and patterns of increase seen in pollen records. Such processes are seen as being the dominant influence on the pattern of change and the development of forest. Forested systems, such as those in Europe, are strongly influenced by historical events, such as the mid-Holocene decline of elm. Forest composition is likely to be similar, in the broadest terms, from one interglacial to another, but always to vary in detail. The interaction of individuals, populations and environmental variables ensures that, although deterministic, prediction of change will always be difficult.  相似文献   

17.
Liana dynamics in secondary and mature forests are well known in tropical areas dominated by native tree species. Outside the tropics and in secondary forests invaded by exotic species, knowledge is scarce. In this study, we compare liana communities between secondary and mature forests dominated by native species in a subtropical montane area of Sierra de San Javier, Tucuman, Argentina. Additionally, we evaluate changes of liana communities in secondary forests with increasing densities of Ligustrum lucidum and Morus alba, two of the most invasive exotic trees of the area. We surveyed liana species richness and density in three 30-year secondary patches, four 60-year secondary patches, and four mature patches dominated by native tree species, to analyze changes in liana communities with forest age. Within each patch, we sampled 10–25 20 × 20 m quadrats. Additionally, we surveyed liana density and species richness in secondary forest patches with different densities of L. lucidum and M. alba. In native-dominated forests, liana species richness increased and showed a tendency of increasing basal area from 30-year secondary forests to mature forests. Liana density was highly variable, and most of the species were shared between native-dominated secondary and mature forests. Liana density and species richness decreased with L. lucidum density, whereas in secondary forests highly dominated by M. alba, lianas increased in density. Overall, lianas followed different pathways influenced by native forest succession and exotic tree invasions.  相似文献   

18.
We compared foraging behavior of foliage-gleaning birds of the boreal forest of two Palaearctic (central Siberia and European Russia) and two Nearctic (Mackenzie and Ontario, Canada) sites. Using discriminant function analysis on paired sites we were able to distinguish foliage-gleaning species from the Nearctic and Palaearctic with few misclassifications. The two variables that most consistently distinguished species of the two avifaunas were the percentage use of conifer foliage and the percentage use of all foliage. Nearctic foliage-gleaner assemblages had more species that foraged predominantly from coniferous foliage and displayed a greater tendency to forage from foliage, both coniferous and broad-leafed, rather than twigs, branches, or other substrates. The greater specialization on foliage and, in particular, conifer foliage by New World canopy foliage insectivores is consistent with previously proposed hypotheses regarding the role of Pleistocene vegetation history on ecological generalization of Eurasian species. Boreal forest, composed primarily of spruce and pine, was widespread in eastern North America, whereas pockets of forest were scattered in Eurasia (mostly the mountains of southern Europe and Asia). This may have affected the populations of birds directly or indirectly through reduction in the diversity and abundance of defoliating outbreak insects. Loss of habitat and resources may have selected against ecological specialization on these habitats and resources. Received: 11 May 1998 / Accepted: 24 June 1999  相似文献   

19.
BPA(broks parsimony analysis)是历史生物地理学研究的重要分析方法之一,包括初级BPA和二级BPA。前者主要用于寻找共同格局,后者是对网状进化格局的解释。本文详细介绍了二级BPA的分析方法,并就BPA与其它历史生物地理学/支序学派的研究方法进行了区别。  相似文献   

20.
The relationships between vegetational and arbuscular mycorrhizal (AM) dynamics were investigated in an old-field succession in the western Italian Alps. Vegetation and AM colonization were determined in eight sites corresponding to different stages of successional dynamics: (a) a field under cultivation; (b) fields abandoned for 1, 2 and 3 years supporting ruderal vegetation; (c) grasslands; (d) shrublands; (e) early wood communities; (f) mature woods. AM colonization was evaluated on the roots of representative plants from each community. The data thus obtained, together with those from the literature, were then used to calculate the plant community mycorrhizal index. This index provides qualitative and quantitative information concerning the relative percentage of non-mycorrhizal, AM and ectomycorrhizal plant cover in an entire plant community. The AM inoculum potential of each site was also determined using a bait approach. Farming disturbance temporarily reduced soil infectivity. Non-mycorrhizal ruderal annuals dominated after 1 year abandonment and covered 90–100 % of the surface. After 2 or 3 years, a rapid change to AM-colonized competitive and competitive-ruderal perennials was observed. The increase in AM inoculum was associated with an increase in floristic richness and equitability in the community. AM were also dominant in the shrublands and early wood communities, but gave way to ectomycorrhizal species in the mature woods. The observed AM inoculum potentials are in accordance with these findings. The results of this study further emphasize the need to take into account AM infection in plans for the renaturalization of degraded areas. Accepted: 16 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号