首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insulin-like growth-factor-II/mannose-6-phosphate (IGF-II/Man6P) receptor binds two classes of ligands, insulin-like growth factors and lysosomal enzymes. We have examined the ability of the lysosomal enzyme, beta-galactosidase, to modulate the binding of 125I-IGF-II to the receptor. beta-Galactosidase purified from bovine testis was fractionated on a DEAF-Sephacel ion-exchange column. Column fractions were assayed for enzymatic activity and for ability to inhibit the binding of 125I-IGF-II to the IGF-II/Man6P receptor. Enzyme fractions eluting at higher NaCl concentrations which had previously been shown to exhibit greater uptake by cells in culture, exhibited greater potency in inhibiting the binding of 125I-IGF-II to the receptor. A pool of these fractions from the DEAE-Sephacel column inhibited 125I-IGF-II binding to pure receptor by 80% with the concentration required for half-maximal inhibition being 25 nM. The inhibition of binding by beta-galactosidase was completely blocked by simultaneous incubation with Man6P. Inhibition of the enzymatic activity of beta-galactosidase with D-galactonic acid gamma-lactone did not affect the ability of beta-galactosidase to inhibit the binding of 125I-IGF-II to the receptor. Scatchard analysis of IGF-II binding to pure receptor in the presence and absence of beta-galactosidase showed that beta-galactosidase decreased the binding affinity for IGF-II (Kd 0.26 nM versus 1.0 nM in the presence of 57 nM beta-galactosidase). We confirmed the observations of others that Man6P alone actually increases the binding of 125I-IGF-II to the IGF-II/Man6P receptor, but we found that this phenomenon was dependent upon the method of preparation of the IGF-II/Man6P receptor. Microsomal membrane preparations, solubilized membranes, and receptors purified on an IGF-II-Sepharose column all exhibited stimulation of 125I-IGF-II binding by Man6P, whereas receptors purified on lysosomal enzyme affinity columns showed little or no stimulation of 125I-IGF-II binding by Man6P. We conclude that beta-galactosidase decreases the binding affinity of the IGF-II/Man-6-P receptor for IGF-II by binding with high affinity to the Man6P-recognition site.  相似文献   

2.
The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl-125I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl-125I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The low density microsomes were previously shown to contain intracellular membranes (Oka, Y., and Czech, M.P. (1984) J. Biol. Chem. 259, 8125-8133). The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II, measured by the binding of anti-IGF-II receptor antibody to cells, remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time, as evidenced by a large increase in the photolabeling of intracellular membrane IGF-II receptors when cells are incubated at 37 degrees C with insulin and 4-azidobenzoyl-125I-IGF-II prior to photoactivation; and 3) increases the rate of cellular 125I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody. The results indicate that the action of insulin to elevate the steady state number of cell surface IGF-II receptors leads to an increased internalization flux of IGF-II-bound receptors, mediating increased IGF-II uptake and degradation.  相似文献   

3.
The lysosomal enzyme cathepsin-D (cath-D) and insulin-like growth factor-II (IGF-II), which share a common IGF-II/mannose-6-phosphate (M6P) transmembrane receptor, are both synthesized and secreted by breast cancer cells, upon which they might exert an intracrine/autocrine control on proliferation. We have evaluated the binding of 125I-immunopurified human cath-D in different breast cell membrane preparations. The concentration of high affinity M6P reversible binding sites (mean Kd, 0.85 nM) varied among the different breast cancer cells (0-0.82 pmol/mg membrane protein), but there was no correlation between the presence of steroid receptor and M6P-dependent binding. Cross-linking experiments with [125I]cath-D and [125I]IGF-II showed the formation of complexes with the 270,000 mol wt IGF-II/M6P receptor molecule which migrated, respectively, at 330,000 and 270,000 mol wt in 3-10% gradient sodium dodecyl sulfate-polyacrylamide gels. [125I]IGF-II cross-linking was increased by M6P (20% above control), whereas cath-D strongly inhibited IGF-II interaction by 80%. Conversely, IGF-II reduced [125I]cath-D cross-linking by 55%. Direct ligand binding on receptors transferred onto nitrocellulose sheets by Western blotting confirmed the interaction of both ligands on the same receptor molecule. By studying IGF-II's growth-promoting activity in these cells in a wide range of concentrations, we show that IGF-II triggers its mitogenic response via IGF-II/M6P receptor at low concentrations, whereas it is mainly acting via IGF-I receptor at high concentrations. Three lines of evidences lead us to that conclusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The insulin-like growth factor-II/mannose 6-phosphate receptor which targets acid hydrolases to lysosomes, has two different binding sites, one for the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal enzymes and the other for insulin-like growth factor-II (IGF-II). We have asked whether IGF-II can regulate the cellular uptake of the lysosomal enzyme 125I-beta-galactosidase by modulating the binding of 125I-beta-galactosidase to the IGF-II/Man-6-P receptor. We first isolated high affinity 125I-beta-galactosidase by affinity chromatography on an IGF-II/Man-6-P receptor-Sepharose column. Specific uptake (mannose 6-phosphate-inhibitable) of 125I-beta-galactosidase in BRL 3A2 rat liver cells and in rat C6 glial cells was 3.7-4.8 and 4.0-8.0% of added tracer, respectively. The cell-associated 125I-beta-galactosidase in the uptake experiments largely represented internalized radioligand as measured by acid or mannose 6-phosphate washing. The uptake of 125I-beta-galactosidase was inhibited by an antiserum (No. 3637) specific for the IGF-II/Man-6-P receptor. Low concentrations of IGF-II also inhibited the uptake of 125I-beta-galactosidase. Maximal concentrations of IGF-II inhibited uptake by 73 +/- 8% (mean +/- S.D.) in C6 cells and by 77 +/- 6% in BRL 3A2 cells compared to the level of inhibition by mannose 6-phosphate. The relative potency of IGF-II, IGF-I, and insulin (IGF-II much greater than IGF-I; insulin, inactive) were characteristic of the relative affinities of the ligands for the IGF-II/Man-6-P receptor. IGF-II also partially inhibited the binding of 125I-beta-galactosidase to C6 and BRL 3A2 cells at 4 degrees C and inhibited the binding to highly purified IGF-II/Man-6-P receptor by 58 +/- 14%. We conclude that IGF-II inhibits the cellular uptake of 125I-beta-galactosidase and that this inhibition is partly explained by the ability of IGF-II to inhibit binding of 125I-beta-galactosidase to the IGF-II/Man-6-P receptor.  相似文献   

6.
We have previously shown that the antireceptor antibody alpha IR-3 inhibits binding of 125I-somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) to the 130-kDa alpha subunit of the type I receptor in human placental membranes, but does not block 125I-insulin-like growth factor II (IGF-II) binding to a similar 130-kDa complex in these membranes. To determine whether the 130-kDa 125I-IGF-II binding complex represents a homologous receptor or whether 125I-IGF-II binds to the type I receptor at a site that is not blocked by alpha IR-3, type I receptors were purified by affinity chromatography on Sepharose linked alpha IR-3. The purified receptors bound both 125I-Sm-C/IGF-I and 125I-IGF-II avidly (KD = 2.0 X 10(-10) M and 3.0 X 10(-10) M, respectively). The maximal inhibition of 125I-Sm-C/IGF-I binding by the antibody, however, was 62% while only 15% of 125I-IGF-II binding was inhibited by alpha IR-3. In the presence of 500 nM alpha IR-3, Sm-C/IGF-I bound with lower affinity (KD = 6.5 X 10(-10) M) than IGF-II (KD = 4.5 X 10(-10) M) and IGF-II was the more potent inhibitor of 125I-Sm-C/IGF-I binding. These findings suggest that the type I receptor contains two different binding sites. The site designated IA has highest affinity for Sm-C/IGF-I and is blocked by alpha IR-3. Site IB has higher affinity for IGF-II than for Sm-C/IGF-I and is not blocked by alpha IR-3.  相似文献   

7.
We have studied insulin-like-growth-factor (IGF) binding in two subclones of the C2 myogenic cell line. In the permissive parental subclone, myoblasts differentiate spontaneously into myotubes in medium supplemented with fetal calf serum. Unlike permissive myoblasts, inducible myoblasts require high concentrations of insulin (1.6 microM) or lower concentrations of IGF-I (25 nM) to differentiate, and expression of MyoD1 is not constitutive. IGF receptors were studied in microsomal membranes of proliferating and quiescent myoblasts and myotubes. IGF-II binding was also studied in inducible myoblasts transfected with the MyoD1 cDNA (clone EP5). Both inducible and permissive cells exhibited a single class of binding sites with similar affinity for IGF-I (Kd 0.8-1.2 nM). Affinity cross-linking of [125I]IGF-I to microsomal membranes, under reducing conditions, revealed a binding moiety with an apparent molecular mass of 130 kDa in permissive cells and 140 kDa in inducible cells, which corresponded to the alpha subunit of the IGF-I receptor. In permissive quiescent myoblasts, linear Scatchard plots suggested that [125I]IGF-II bound to a single class of binding sites (Kd 0.6 nM) compatible with binding to the IGF-II/M6P receptor. This was confirmed by affinity cross-linking experiments showing a labeled complex with an apparent molecular mass of 260 kDa and 220 kDa when studied under reducing and non-reducing conditions, respectively. In contrast, competitive inhibition of [125I]IGF-II binding to inducible quiescent myoblasts generated curvilinear Scatchard plots which could be resolved into two single classes of binding sites. One of them corresponded to the IGF-II/M6P receptor (Kd 0.2 nM) as evidenced by cross-linking experiments. The second was the binding site of highest affinity (Kd 0.04 nM) which was less inhibited by IGF-I than by IGF-II and was not inhibited by insulin. It migrated in SDS/PAGE at a position equivalent a molecular mass of 140 kDa, under reducing conditions, and at approximately 300 kDa, under non-reducing conditions. The labeling of this atypical binding moiety was not inhibited by anti(IGF-II/M6P-receptor) immunoglobulin. It was also observed in permissive and inducible myoblasts at proliferating stage. It was absent for permissive quiescent myoblasts and from permissive and inducible myotubes. Forced expression of MyoD1 in inducible cells (EP5 cells) dramatically reduced [125I]IGF-II binding to this atypical receptor. It emerges from these experiments that C2 cells express a putative alpha 2 beta 2 IGF-II receptor structurally related to the insulin/IGF-I receptor family. It is present in myoblasts but not in myotubes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The rat insulin-like growth factor II (IGF-II) receptor develops transmembrane signaling functions by directly coupling to a guanine nucleotide-binding protein (G protein) having a 40-kDa alpha subunit, Gi-2, whereas recent studies have indicated that the IGF-II receptor is a molecule identical to the cation-independent mannose 6-phosphate receptor (CI-MPR), a receptor implicated in lysosomal enzyme sorting. In this study, by using vesicles reconstituted with the clonal human CI-MPR and G proteins, we indicated that the CI-MPR could stimulate guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding and GTPase activities of Gi proteins in response to IGF-II. The stimulatory effect of IGF-II on Gi-2 depended on the reconstituted amount of the CI-MPR; it could not be found in vesicles reconstituted with Gi-2 alone; and it was also observed on Gi-1 reconstituted with the CI-MPR in phospholipid vesicles. Of interest, such stimulatory effect was not reproduced by Man-6-P in CI-MPR vesicles reconstituted with either G protein. Furthermore, the affinity for Man-6-P-mediated beta-glucuronidase binding to several kinds of native cell membranes was not reduced by 100 microM GTP gamma S. Instead, however, Man-6-P dose-dependently inhibited IGF-II-induced Gi-2 activation with an IC50 of 6 microM in vesicles reconstituted with the CI-MPR and Gi-2. The action of 100 nM IGF-II was completely abolished by 1 mM Man-6-P. Such an inhibitory effect of Man-6-P was reproduced by 4000 times lower concentrations of beta-glucuronidase or similar concentrations of fructose 1-phosphate, but not by mannose or glucose 6-phosphate. These results indicate that the human CI-MPR has two distinct signaling functions that positively or negatively regulate the activity of Gi-2 in response to the binding of IGF-II or Man-6-P.  相似文献   

9.
The Type-2 insulin-like growth factor receptor (IGF2R) mediates the transport of lysosomal hydrolases to lysosomes and the clearance of insulin-like growth factor II (IGF-II). Mutant mice lacking IGF2R usually die perinatally, but are completely rescued from lethality in the absence of IGF-II. IGF2R/IGF-II-deficient mice have elevated levels of circulating IGF binding protein (IGFBP)-3 and show a strong IGFBP-6 immunoreactivity in all pancreatic islet cells and in secretory granules of different size in acinar cells and interlobular connective tissue of exocrine pancreas. Fibroblasts derived from double mutant mice missort the lysosomal protease cathepsin D, and are able to degrade endocytosed (125I)IGFBP-3 intracellularly, however, with lower efficiency than in control cells. These results show that the deficiency of IGF2R and IGF-II affects the expression and metabolism of IGFBPs in a tissue- and cell type-specific manner.  相似文献   

10.
The mammalian cation-independent mannose 6-phosphate/insulin-like growth factor (IGF)-II receptor binds IGF-II with high affinity. Ligands transported by the MPR 300/IGF-IIR include IGF-II and mannose 6-phosphate-modified proteins. By targeting IGF-II to lysosomal degradation, it plays a key role in the maintenance of correct IGF-II levels in the circulation and in target tissues. Although, from our studies we found homologous receptor in calotes but its functional significance was not known. We present here the first report on the calotes MPR 300/IGF-IIR binds IGF-II with Kd of 12.02 nM; these findings provide new and strong evidence that MPR 300/IGF-IIR in Calotes versicolor binds IGFII with high affinity.  相似文献   

11.
The insulin-like growth factor-II receptor (IGF-IIR) is frequently mutated or deleted in some malignant human tumors, suggesting that the IGF-IIR is a tumor suppressor. However, the exact mechanism by which IGF-IIR suppresses growth in tumors has not been definitively established. We demonstrate that IGF-IIR-deficient murine L cells (D9) have higher growth rates than IGF-IIR-positive L cells (Cc2) in response to IGF-II. IGF-II levels are higher in growth-conditioned medium from D9 versus Cc2 cells. Receptor neutralization studies and measurements of insulin receptor substrate 1 phosphorylation confirm that the enhanced growth of D9 cells is due to increased stimulation of the IGF-I and insulin receptors by IGF-II. In contrast, the levels of secreted latent and active transforming growth factor beta (TGF-beta) are similar for both D9 and Cc2 cells, indicating that the slower growth of Cc2 cells is not due to activation of latent TGF-beta by IGF-IIR and growth inhibition. The results directly demonstrate that down regulation of the IGF-IIR promotes the growth of transformed D9 cells by sustaining IGF-II, which binds to and activates IGF-IR and insulin receptor to increase intracellular growth signals.  相似文献   

12.
The interaction of soluble forms of the human cation-independent insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-IIR) with IGFs and mannosylated ligands was analyzed in real time. IGF-IIR proteins containing domains 1-15, 10-13, 11-13, or 11-12 were combined with rat CD4 domains 3 and 4. Following transient expression in 293T cells, secreted protein was immobilized onto biosensor chips. beta-Glucuronidase and latent transforming growth factor-beta1 bound only to domains 1-15. IGF-II bound to all constructs except a control, which contained a point mutation in domain 11. The affinity of domains 1-15, 10-13, 11-13, and 11-12 to IGF-II were 14, 120, 100, and 450 nm, respectively. Our data suggest that domain 13 acts as an enhancer of IGF-II affinity by slowing the rate of dissociation, but additional enhancement by domains other than 10-13 also occurs. As the receptor functions to transport ligands from either the trans-Golgi network or extracellular space to the endosomes, the interaction of IGF-IIR extracellular domains with IGF-II was analyzed over a pH range of 5.0-7.4. The constructs behaved differently in response to pH and in recovery after low pH exposure, suggesting that pH stability of the extracellular domains depends on domains other than 10-13.  相似文献   

13.
We previously reported that insulin-like growth factor II (IGF-11) stimulated clonal growth of an erythroleukemia cell line, K562, in semi-solid agar, an effect not mimicked by insulin-like growth factor I (IGF-1), as IGF-I receptors are generally not expressed in this cell line. Affinity crosslinking of intact K562 cells with 125I-IGF-II revealed that the labeled hormone predominantly bound to a protein with a molecular weight of approximately 75 K. We report here the partial purification of the 75 K IGF-II binding protein from K562 cells. Triton X-100-solubilized K562 cells were subjected to Sephacryl-400, followed by Sephacryl-200 chromatography. Fractions of interest were collected and applied to a Sepharose-IGF-II column or an immunoaffinity column. The immuno-affinity column was prepared using an antiserum against placental membrane-derived material eluted from the Sephacryl-400 column in the elution volume, corresponding to the IGF-II binding protein from K562 cells. An affi-gel 10 affinity column, prepared with a protein A purified IgG fraction of this antiserum (antibody-29), retarded proteins showing binding specificity for IGF-II, with apparent molecular weights of 76 K, 87 K, and 70 K under reducing conditions. These protein bands were similar to the proteins retarded in the IGF-II affinity column, when evaluated by affinity crosslinking and SDS-PAGE. Fractionation of the purified material from the antibody-29 affinity column on Superose 12 revealed 6 protein peaks. Affinity crosslinking of the peak fractions from FPLC resulted in single bands with a molecular weight of 75 K under reducing conditions with variable specificity for IGF-II.  相似文献   

14.
The human colon adenocarcinoma cell lines SW 948, SW 1116, and SW 1222 were tested for their ability to sort and internalize lysosomal enzymes. The biosynthesis of the lysosomal enzymes cathepsin B, arylsulfatase A, and beta-hexosaminidase in these cell lines exhibits no significant differences to that in human fibroblasts. The intracellular targeting of newly synthesized hydrolases to the lysosomes relies in colon carcinoma cells on the mannose 6-phosphate receptor system. Both the cation-independent mannose 6-phosphate receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor are expressed in all colon carcinoma cell lines investigated. Endocytosis of lysosomal enzymes via mannose 6-phosphate receptors is reduced in colon carcinoma cells as compared with human fibroblasts. SW 1116 cells were shown to be deficient in receptor-mediated endocytosis of mannose 6-phosphate containing ligands. Ligands of other endocytic receptors as well as the fluid-phase marker horseradish peroxidase were internalized at normal rates. While antibodies against CI-MPR bind to the surface of SW 1116 cells, these antibodies cannot be internalized. These data suggest that the cycling of CI-MPR is specifically impaired in SW 1116 cells.  相似文献   

15.
16.
Fetal murine neuronal cells bear somatomedin receptors which can be classified according to their affinities for IGF-I, IGF-II and insulin. Binding of 125I-IGF-I is half-maximally displaced by 7 ng/ml IGF-I while 15- and 700-fold higher concentrations are required for, respectively, IGF-II and insulin. Linear Scatchard plots of competitive-binding data with IGF-I suggest one single class of type I IGF receptors (Ka = 2.6 X 10(9) M-1; Ro = 4500 sites per cell). The occurrence of IGF-II receptors appears from the specific binding of 125I-IGF-II and competition by unlabeled IGF-II; the IGF-II binding sites display a low affinity for IGF-II and no affinity for insulin. IGF-II also interacts with insulin receptors although 50- to 100-fold less potent than insulin in competing for 125I-insulin binding. The presence of distinct receptors for IGF-I, IGF-II and insulin on fetal neuronal cells is consistent with a role of these peptides in neuronal development, although our data also indicate that IGF-I receptors could mediate the growth promoting effects of insulin.  相似文献   

17.
The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.  相似文献   

18.
Based on the finding that stimulation of the IGF-II, receptor (IGF-IIR) is capable of activating Gi2 and calcium channels in BALB/c 3T3 fibroblasts, it was found that purified IGF-IIR can couple directly to purified Gi2 in phospholipid vesicles. IGF-IIR–Gi2 coupling can be characterized as follows. IGF-IIR directly couples to Gi2 in response to IGF-II in a stoichiometrical manner, suggesting that IGF-IIR works as a transmembrane signaling molecule and that the seven-transmembrane structure is not essential for receptor-G protein coupling. The mode of IGF-IIR–Gi2 interaction is similar to that of conventional receptor–G protein coupling, suggesting that a common G protein recognition mechanism is shared by IGF-IIR and conventional G-coupled receptors. The action of IGF-IIR is specific on Gi2 among various G proteins. Finally, the activity of IGF-IIR on Gi2 is similarly potent across the species of the proteins. These characteristics led to the discovery of a 14-amino-acid region in IGF-IIR that can directly interact with and activate Gi2, and is located at residues 2410–2423 of the human receptor. Subsequent work has indicated that this region is responsible for Gi-coupling function of intact IGF-IIR. The most important extensions of this discovery are the following: (1) The structure–function relationship for the Gi-activating function of this 14-amino-acid sequence, (2) the prediction of G protein-coupled functions of receptors based on the results obtained from 1), and (3) clarification of the detailed mechanism whereby ligand–receptor complex recognizes G proteins. This paper reviews what we have learned from IGF-IIR in terms of receptor–G protein interfaces and discusses future prospects. © 1993 Wiley-Liss, Inc.  相似文献   

19.
We examined the role of N-linked glycosylation of the insulin-like growth factor-II (IGF-II)/mannose 6-phosphate (Man-6-P) receptor in binding of [125I]IGF-II to the receptor. First we studied the synthesis and posttranslational processing of this receptor in rat C6 glial cells, which have abundant IGF-II/Man-6-P receptors. Cells were pulse labeled with [35S]methionine and lysed, and the IGF-II/Man-6-P receptor was immunoprecipitated using a specific IGF-II/Man-6-P receptor antibody (no. 3637). Analysis of the immunoprecipitate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with reduction of disulfide bonds showed a 235-kDa receptor precursor that was processed into the mature 245-kDa IGF-II/Man-6-P receptor within 2 h of chase. Digestion of the 235-kDa precursor with endoglycosidase-H (Endo H) produced a 220-kDa form, whereas the mature 245-kDa receptor was relatively resistant to cleavage by Endo H. When cells were cultured in the presence of 2 microM monensin, the 235-kDa receptor was not further processed into the mature Endo H-resistant receptor form. In addition, the presence of swainsonine in C6 glial cell cultures led to the formation of a 240-kDa receptor hybrid molecule, which was cleaved by Endo H into a 225-kDa species. When tunicamycin was present during the pulse-chase labeling experiment, a 220-kDa receptor species accumulated. This species was 205 kDa by immunoblotting when SDS-PAGE was performed under nonreducing conditions. Pure IGF-II/Man-6-P receptor was digested with N-glycosidase-F, and the digest was immunoblotted with antiserum 3637 after SDS-PAGE under nonreducing conditions. Whereas undigested receptor was a single band of 215 kDa under nonreducing conditions, digested receptor was 205 kDa. The binding affinity of IGF-II for the digested receptor was the same as the binding affinity of IGF-II for the undigested receptor. In addition, affinity cross-linking experiments showed that [125I]IGF-II also bound to the unglycosylated receptor precursor that accumulated in the tunicamycin-treated cells, and the binding affinity of IGF-II for this species was indistinguishable from the binding affinity of IGF-II for the mature receptor. We conclude that IGF-II can bind to an IGF-II/Man-6-P receptor that lacks N-linked oligosaccharides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号