首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adventitious shoot regeneration from root, hypocotyl, cotyledon and primary leaf explants of safflower (Carthamus tinctorius L.) was studied. Shoot regeneration was promoted by benzyladenine (BA) + naphthaleneacetic acid (NAA), BA + indole-3-butyric acid (IBA), kinetin + NAA and thidiazuron (TDZ) + NAA incorporated in Murashige and Skoog (MS) basal medium. High frequency of shoot regeneration and high number of shoots per regenerating explant were obtained on a wide range of TDZ + NAA combinations. Proliferated shoots were elongated in MS + 0.5 mg dm−3 kinetin and well-developed shoots were rooted in half strength MS + 0.5 mg dm−3 NAA. Rooted shoots were successfully acclimatized and established in soil.  相似文献   

2.
Subhan  D.  Murthy  S.D.S. 《Photosynthetica》2001,39(1):53-58
Al3+ significantly delayed the loss of chlorophyll (Chl), protein, and carotenoids when compared to K+ and Mg2+ during dark-induced senescence of detached primary leaves of Triticum aestivum. Thylakoid membranes isolated from Al3+ - treated leaves showed a better retention of photosystem (PS) 2, PS1, and whole chain electron transport activities than thylakoids of K+- or Mg2+-treated leaves. These ions protected the electron transport activities and restored the DCMU-dependent fluorescence increase of thylakoid membranes in a valency-dependent manner. Al3+ also delayed the change of excitation energy distribution during senescence.  相似文献   

3.
Efficient plant regeneration system from leaf base segments of wheat (Triticum aestivum L.) was developed. The factors affecting the callus formation and regeneration capacity of leaf segments of two genotypes; Bobwhite and Pavon 76, were investigated. The highest number of somatic embryos (SE) was obtained on Murashige and Skoog medium supplemented with 2 mg dm−3 2,4-dichlorophenoxyacetic acid + 1 mg dm−3 naphthalenacetic acid (14.7 SE per segment). Highest frequency of embryogenic callus (96 %) and somatic embryo formation (24.3 SE per segment) were achieved in the first segments. The highest plantlet regeneration was obtained after transfer of embryogenic calli to regeneration medium supplemented with 1 mg dm−3 kinetin (6.3 plantlets per segment).  相似文献   

4.
Braun  V.  Buchner  O.  Neuner  G. 《Photosynthetica》2002,40(4):587-595
The species specific response of photosystem 2 (PS2) efficiency and its thermotolerance to diurnal and seasonal alterations in leaf temperature, irradiance, and water relations were investigated under alpine field conditions (1 950 m) and in response to an in situ long-term heat treatment (+3 K). Three plant species were compared using the naturally occurring microstratification of alpine environments, i.e. under contrasting leaf temperatures but under similar macroclimatic conditions. Thermotolerance of PS2 showed a high variability in all three species of up to 9.6 K. Diumal changes (increases or even decreases) in PS2 thermotolerance occurred frequently with a maximum increase of +4.8 K in Loiseleuria procumbens. Increasing leaf temperatures and photosynthetic photon flux density influenced thermotolerance adjustments. Under long-term heating (+3 K) of L. procumbens canopies with infra-red lamps, the maxima of the critical (Tc) and the lethal (Tp) temperature of PS2 increased by at least 1 K. Thermotolerance of the leaf tissue (LT50) increased significantly by +0.6 K. The effects of slight water stress on thermotolerance of PS2 were species specific. High temperature thresholds for photoinhibition were significantly different between species and increased by 9 K from the species in the coldest microhabitat to the species in the warmest. Experimental heating of L. procumbens canopies by +3 K caused a significant (p>0.01) upward shift of the high temperature threshold for photoinhibition by +3 K. Each species appeared to be very well adapted to the thermal conditions of its microhabitat as under the most frequently experienced daytime leaf temperatures no photoinhibition occurred. The observed fine scale thermal adjustment of PS2 in response to increased leaf temperatures shows the potential to optimise photosynthesis under varying environmental conditions as long as the upper thermal limits are not exceeded.  相似文献   

5.
Summary An efficient protocol has been developed for the regeneration of plantlets from leaf explants of witloof chicory (Cichorium intybus L.). Regeneration via callus was obtained on modified Murashige and Skoog semisolid medium (MS) containing 2.0 μM indole-3-acetic acid +5.0 μM 6-furfurylaminopurine (kinetin), and 1000 mgl−1 casein hydrolyzate. At least five or more shoots regenerated from each callus. The shoots were rooted on MS +0.2 μM indole-3-butyric acid. The plantlets thus obtained were successfully established in soil after bardening. Esculin accumulation was recorded in plant tissues at different stages of differentiation in in vitro cultures and compared with in vivo-grown, plants. The esculin accumulation was higher in in vitro plants.  相似文献   

6.
A field experiment was conducted to investigate the effects of presoaking the wheat grains (Triticum aestivum L.) in different levels of salinity (33 or 66 mM) and in growth regulators (indolyl-3-acetic acid, IAA at SO g m-3, gibberellic acid, GA3 at 100 g m-3, or kinetin at 100 g m-3) on the shoot growth and pigment content of the developing wheat flag leaf. Salinity at 33 or 66 mM led to an insignificant increase in the fresh and dry masses as well as in the shoot diameter and shoot length, but it attenuated the flag leaf area. In the majority of cases, salinity increased the chlorophyll (Chla, Chlb) and carotenoid contents as well as the number of chloroplasts per a mesophyll cell. The growth in the wheat shoot of the saline-treated plants was, in general, stimulated in response to presoaking the grains in kinetin or GA3. On the other hand, IAA + salinity led to a negligible effect on the growth in the wheat plants particularly at the early stages of growth. The presoaking of grains in NaCl at 33 mM + IAA or 66 mM + kinetin induced a marked increase in the pigment content of the wheat flag leaf particularly at the early stages of growth. The interaction between salinity and phytohormones increased the number of chloroplasts; kinetin was the most effective.  相似文献   

7.
Callus cultures of 5 genotypes of S. scabra Vog. were optimally established from leaf tissue on Murashige and Skoog (MS) basal medium supplemented with 0.5–2.0 mg l-1 2, 4-Dichlorophenoxy acetic acid (2, 4-D) and 1.0–2.0 mg l-1 6-benzylaminopurine (BAP). On media containing 2, 4-D only, calli were soft, and rhizogenesis occurred on calli of 4 genotypes. Calli formed on media containing BAP only, but not with kinetin only. In the presence of 2, 4-D, BAP inhibited rhizogenesis and promoted better callus growth than kinetin. High frequency shoot induction was achieved for 3 genotypes on MS +2.0 mg l-1 BAP. Roots formed on shoots when sub-cultured on half-strenght MS without growth regulators. The form of cytokinin used in the callus induction media appeared to affect subsequent shoot organogenesis. Genotypic differences were observed for shoot organogenesis. There was some morphological variation evident among regenerants.  相似文献   

8.
Summary It is shown that the simultaneous presence of sucrose (30mg · 1–1) and kinetin (0.2 to 5mg · 1–1) is inductive of both lipogenesis and plastidal proteogenesis inDatura innoxia leaf expiants grownin vitro on Murashige and Skog's medium. Ultrastructural examinations reveal, since the end of the first day, an accumulation of lipid inclusions at the cytoplasmic level. At the same time, it occurs an increase in ribosome content and a polyribosome formation preceding the appearance of intraplastidal protein structures. Sucrose alone or kinetin alone have no effect on these two phenomena. The possible interactions between sucrose and kinetin upon attraction and mobilization of nutrients are considered as well as the importance of the creation of such pools for the further cell reactivation.  相似文献   

9.
The organogenic competence of leaf explants of eleven Carthamus species including C. tinctorius on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) + α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) + NAA was investigated. Highly prolific adventitious shoot regeneration was observed in C. tinctorius and C. arborescens on both growth regulator combinations and the shoot regeneration frequency was higher on medium supplemented with TDZ + NAA. Nodal culture of nine Carthamus species on media supplemented with BA and kinetin (KIN) individually revealed the superiority of media supplemented with BA over that of KIN in facilitating a higher shoot proliferation index. Proliferating shoots from axillary buds and leaf explants were transferred to medium supplemented with 1.0 mg dm−3 KIN or 0.5 mg dm−3 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium supplemented with 1.0 mg dm−3 each of indole-butyric acid (IBA) and phloroglucinol. The plantlets thus obtained were hardened and transferred to soil.  相似文献   

10.
Calcium deficiency was induced in hydroponically grown 1.5-years-old coffee plants with 12–14 pairs of leaves. Calcium was given in the form of Ca(NO3)2: 5, 2.5, 0.1, 0.01 and 0 mM. After 71 days of Ca-treatment root and shoot as well as total biomass were decreased by severe Ca-deficiency. However, a stronger decrease was observed for shoot growth as revealed by the increase in the root/shoot ratio. New leaves were affected showing decreases in the total leaf area and in Leaf Area Duration (LAD). After 91 days of deficiency, leaf protein concentration decreased (by about 45%) in the top leaves while nitrate reductase activity (NRA) and NO3 content showed no significant changes. Total nitrogen and mineral concentrations (P, K, Ca, Mg and Na) were also determined in leaves and roots. With the decrease in calcium concentration in Ca-deficiency conditions, we observed concomitant increases in the concentrations of K+, Mg2+ and Na+ in leaves (maximal changes of 32% for K+, 96% for Mg2+ and 438% for Na+) and in roots (108% for K+, 86% for Mg2+ and 38% for Na+). Accordingly, the ratio between elements changed, including the ratio N/P, showing a non-equilibrium in the balance of nutrients. Significant correlations were obtained between Ca2+ concentration and some photosynthetic parameters. Ca-deficiency conditions would increase the loss of energy as expressed by the rise in aE and decrease the photochemical efficiency, which confirms the importance of this element in the stabilization of chlorophyll and in the maintenance of good photochemical efficiency at PS II level.Abbreviations Chl Chlorophyll - Fv/Fm ratio of variable to maximal fluorescence - LAD leaf area duration - LHC II light harvesting complex of PS II - NRA nitrate reductase activity - PC photosynthetic capacity - PS II photosystem II - P680 reaction center of PS II - qN non-photochemical quenching - qE high-energy dependent quenching - qp photochemical quenching - SLA specific leaf area  相似文献   

11.
Several mineral rhizotoxicities, including those induced by Al3+, H+, and Na+, can be relieved by elevated Ca2+ in the rooting medium. This leads to the hypothesis that the toxic cations displace Ca2+ from transport channels or surface ligands that must be occupied by Ca2+ in order for root elongation to occur. In this study with wheat (Triticum aestivum L.) seedlings, we have determined, in the case of Al3+, that (i) Ca2+, Mg2+, and Sr2+ are equally ameliorative, (ii) that root elongation does not increase as Ca2+ replaces Mg2+ or Sr2+ in the rooting media, and (iii) that rhizotoxicity is a function solely of Al3+ activity at the root-cell membrane surface as computed by a Gouy-Chapman-Stern model. The rhizotoxicity was indifferent to the computed membrane-surface Ca2+ activity. The rhizotoxicity induced by high levels of tris(ethylenediamine)cobaltic ion (TEC3+), in contrast to Al3+, was specifically relieved by Ca2+ at the membrane surface. The rhizotoxicity induced by H+ exhibited a weak specific response to Ca2+ at the membrane surface. We conclude that the Ca2+-displacement hypothesis fails in the case of Al3+ rhizotoxicity and that amelioration by cations (including monovalent cations) occurs because of decreased membrane-surface negativity and the consequent decrease in the membrane-surface activity of Al3+. However, TEC3+, but not Al3+, may be toxic because it inhibits Ca2+ uptake. The nature of the specific H+-Ca2+ interaction is uncertain.Abbreviations {Al3+ }0 chemical activity of Al3+ at the root-cell membrane surface - {Al3+ }E chemical activity of Al3+ in the external rooting medium - E0 electrical potential at the root-cell membrane surface - HXM2+ hexamethonium ion - TEC3+ tris(ethylenediamine)cobaltic ion  相似文献   

12.
Summary An effcient regeneration protocol has been developed from leaf explants of Pluchea lanceolata, a medicinally important plant of the family Asteracea. Nodular callus was initiated from young leaf segments cultured on Wood and Braun medium containing 2.0% sucrose (WB) supplemented with kinetin. On WB+5.0 mg l−1 kinetin, 100% plant regeneration with 14±0.5 plantlets was obtained. Regenerated plantlets with well-developed root systems were transferred to pots and subsequently to the field. With respect to the effect of metals on morphogenic events and quercetin content of the cultures, lower concentrations of CuSO4 proved to be beneficial but higher concentrations were detrimental. The presence of 200 μM ZnSO4 or 150 μM CuSO4 also resulted in the highest level of quercetin in regenerants. The yield of quercetin in culture varied with stages of differentiation.  相似文献   

13.
Protoplasts were isolated from cell suspensions derived from cotyledon and hypocotyl Gentiana kurroo (Royle). Cell walls were digested with an enzyme cocktail containing cellulase, macerozyme, driselase, hemicellulase and pectolyase in CPW solution. Protoplast viability ranged from 88 to 96%. Three techniques of culture and six media were evaluated in terms of their efficiency in producing viable cultures and regenerating whole plants. With liquid culture, cell division occurred in only a low number of the protoplasts isolated, and no plant regeneration was successful. Cell division occurred within 2 or 3 days in case of agarose solidified media. After 10 days of culture, the number of dividing cells was the highest with modified MS medium in which NH4NO3 was replaced with 3.0 g l−1 glutamine. The best results were obtained with agarose bead cultures: plating efficiency was 68.7% and 58.1% for protoplasts isolated from cotyledon and hypocotyl derived suspensions, respectively. The results were achieved with using medium containing 0.5 mg l−1 2,4-D + 1.0 mg l−1 kinetin or 2.0 mg l−1 BAP + 1.0 mg l−1 dicamba + 0.1 mg l−1 NAA + 80 mg l−1 adenine sulfate. Protocalluses transferred on the following composition of plant growth regulators: 0.5 mg l−1 2,4-D + 1.0 mg l−1 kinetin or 1.0 mg l−1 kinetin + 0.5 mg l−1 GA3 + 80.0 mg l−1 adenine sulfate developed in embryogenic cultures. However, the best embryo production occurred with the first one. Later embryos were transferred to half-strength MS mineral salts to promote plants formation. Flow cytometry studies revealed increased amounts of DNA in about one third of the regenerants.  相似文献   

14.
Experiments were performed to evaluate the capacity of quince (Cydonia oblonga Mill.) leaves to regenerate somatic embryos and shoots and/or roots simultaneously. Leaves, treated for 2 d in liquid medium containing 2.5 mg dm−3 2,4-dichlorophenoxyacetic acid were cultured for 0, 3, 6, 9, 12, 15, 18, 21 d on a gelled medium supplemented with 1 mg dm−3 kinetin (Kin) and 0.1 mg dm−3 naphthalenacetic acid (NAA) and were transferred to a medium either without growth regulator (GR-) or containing 0.6 mg dm−3 6-benzylaminopurine (BA) + 0.2 mg dm−3 gibberellic acid (GA3) + 0.06 mg dm−3 indole-3-butyric acid (IBA) (GR+). Leaves producing somatic embryos (SEs) only, or adventitious roots (Rs) only, or SEs+Rs simultaneously, were detected on GR- culture medium; on GR+ medium, leaves producing adventitious shoots (Ss) only, SEs+Ss or SEs+Rs+Ss simultaneously, also appeared. Leaves producing both Ss+Rs were never detected. Proportions among the various types of regenerating leaves varied according to both the length of Kin+NAA treatment and the presence or absence of GR in the transfer medium. The greatest variations, both on GR− and on GR+, took place within the first 9 d of culturing on Kin+NAA. After this period, no further substantial differences in the trend of each type of regenerating leaf were observed. The length of the treatment with Kin+NAA also modified the proportions between the different types of morphogenic structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A field experiment was carried out to investigate the effects of presoaking the wheat grains (Triticum aestivum L.) in 33 or 66 mM NaCl and indolyl-3-acetic acid (IAA at 50 g m−3), gibberellic acid (GA3 at 100 g m−3) or kinetin (100 g m−3) on some tolerance criteria in wheat flag leaf at different stages of development. At various stages of flag leaf development pretreatment with 33 or 66 mM NaCl decreased degree of succulence (particularly 66 mM), relative growth rate, net assimilation rate, relative water content, K+ content and K+/Na+ ratio and at the same time induced accumulation of abscisic acid and Na+. In the majority of cases grain pretreatment with GA3 or kinetin and to a lesser extent with IAA alleviated either partially or completely the deleterious effect of salinity on the above mentioned parameters.  相似文献   

16.
A tissue culture method using Murashige and Skoog's (MS) medium was devised to propagate healthy plants from field grown lettuce plants selected for seed production. Explants (2–3 mm long) from axillary buds were successfully grown on MS + 1.0 or 2.0 mg litre-1 kinetin and 6.4 mg litre-1 IAA to promote shoot growth. Concentrations of 0.5 and 4.0 mg litre-1 kinetin gave poor shoot growth. The cultures were successfully rooted after 3–4 wk on MS + 6.4 mg litres-1 IAA after transfer from MS + 1.0 mg litre-1 kinetin and on MS + 4.8 mg litre-1 IAA after transfer from MS + 2.0 mg litre-1 kinetin. Concentrations of 3.2 and 8.0 mg litre-1 IAA gave poor root initiation. Root initiation was more successful when cultures were grown at 40 Wm-2 than in cultures grown at 5 Wm-2. Rooted cultures were established in compost with a 90–95% success rate and the regenerated plants flowered c. 18 wk after the cultures were initiated.  相似文献   

17.
The present study describes the micropropagation of Picrorhiza kurroa, (commonly known as kutki) an endangered medicinal herb of the temperate Himalayas and a source of hepatoprotective picrosides. In vitro shoot multiplication was achieved through sprouting of axillary buds using nodal segments and leaf tissue. For shoot regeneration, the hormone combinations kinetin (2.0 mg l?1) and Kinetin + Indole-3-butyric acid (IBA) (2.0 mg l?1 + 0.50 mg l?1) with leaf explant was found superior. Interestingly, the basal MS medium gave 99.94 % response (direct proliferation) with nodal explant. The medium supplemented with IBA (1.0 mg ?1) was found best for rooting of regenerated shoots. Nodal segments plated on the medium supplemented with TDZ + IBA (0.11 mg ?1 + 0.50 mg ?1) formed somatic embryos, however further regeneration could not be achieved. The in vitro raised plantlets were hardened and successfully established in the glass house conditions.  相似文献   

18.
Lee  Young-Sang  Mitiku  Girma  Endress  Anton G. 《Plant and Soil》2001,228(2):223-232
The short-term (less than 10 min) effects of Al3+ on the biophysical properties of plasma membranes were investigated by time-series image analysis of osmotically-induced volumetric and morphologic changes of red beet (Beta vulgaris L.) protoplasts. Exposure to Al3+ under hypotonic conditions reduced the volumetric expansion of protoplasts and their resultant burst: i.e. lysis of protoplasts in a concentration-dependent manner. Under hypertonic conditions, protoplasts exposed to Al3+ underwent an enhanced volumetric contraction in cross-sectional area, while maintaining higher protoplast roundness. The residual effects of Al3+ pre-treatment on subsequent osmotic behavior were also examined, and protoplasts pre-treated with Al3+ also exhibited less lysis during subsequent exposure to hypotonic conditions and enhanced volumetric contractions and higher roundness under subsequent hypertonic conditions. Under our experimental conditions, Al3+ consistently minimized protoplast surface area by inhibiting osmotic expansion or by enhancing osmotic contraction, as well as by maintaining higher protoplast roundness. These results suggested that the electrostatic property of Al3+ might have induced the binding and possible cross-linking of negatively-charged sites on the plasma membrane surface. This may be an important factor in understanding the mechanism of Al3+ phytotoxicity.  相似文献   

19.
Wheat leaves (Triticum aestivum L. cv San Agustin INTA) were detached when they reached maximum expansion, put individually in tubes containing water and left in darkness. After 3 days the protein content had decreased to 46% of the initial value. When the leaves were placed in 1 micromolar kinetin, they retained 60% of the initial protein content for the same period. This effect was observed only when leaves were treated with kinetin within the first 24 hours after detachment. The action of kinetin on both protein synthesis and degradation was quantitatively measured. Synthesis was estimated by the incorporation of l-[3H]leucine into proteins. It was higher in kinetin treated than in non treated leaves. It contributed to about 14 micrograms of protein retention per leaf in 3 days. Measurement of protein degradation, evaluated by the decay of radioactivity in leaf proteins previously labeled with l-[3H] leucine or as the difference between rates of protein synthesis and protein content, showed that kinetin decreased protein breakdown rates. It accounted for about 186 micrograms of protein retention per leaf in 3 days. Hence, kinetin action on protein breakdown was 13-fold average higher than its action on synthesis for the conservation of leaf protein. This difference is higher in early stages of the process.  相似文献   

20.
Various leaf sections of Gasteria verrucosa Haw. and Haworthia fasciata Haw. were cultured on media to examine the effect of picloram (4-amino 3, 5, 6-trichloropicolinic acid) and 2, 4-D (2, 4-dichlorophenoxy acetic acid) on somatic embryogenesis. Picloram (0.5, 1.0, 2.0, 3.0 mgl-1) outperformed 2, 4-D (0, 1.0, 2.0, 3.0 mgl-1) as the auxin source of both earliness of callus and embryo induction and final yield of embryos produced at both kinetin levels examined (0.25, 1.0 mgl-1). Embryos arose initially as a yellow, compact globular masses from the area just beneath the epidermis in linear pattern parallel with the main axis of the leaf and then developed a heartshaped appearance. Embryo formation was preceded by growth of callus almost crystalline in appearance on the cut surface. Subsequent shoot formation developed from green pigmented loci in crystalline callus derived from embryos. Shoot and root development in Gasteria was induced on a defined medium containing quarter strength MS or B5 salts with no hormonal supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号