首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt-active acharan sulfate lyase (no EC number) has been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with GAG degrading enzymes. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, diethylaminoethyl (DEAE)-cellulose, CM-Sephadex C-50, HA ultrogel and phosphocellulose column chromatography with the final specific activity of 81.33 micro mol x min-1 x mg-1. The purified salt-active acharan sulfate lyase was activated to 5.3-fold by salts (KCl and NaCl). The molecular weight of salt-active acharan sulfate lyase was 94 kDa by SDS/PAGE and gel filtration. The salt-active acharan sulfate lyase showed optimal activity at pH 7.2 and 40 degrees C. Salt-active acharan sulfate lyase activity was potently inhibited by Cu2+, Ni2+ and Zn2+. This enzyme was inhibited by some agents, butanediol and p-chloromercuric sulfonic acid, which modify arginine and cysteine residues. The purified Bacteroidal salt-active acharan sulfate lyase acted to the greatest extent on acharan sulfate, to a lesser extent on heparan sulfate and heparin. The biochemical properties of the purified salt-active acharan sulfate lyase are different from those of the previously purified heparin lyases. However, these findings suggest that the purified salt-active acharan sulfate lyase may belong to heparin lyase II.  相似文献   

2.
A novel type of heparinase (heparin lyase, no EC number) has been purified from Bacteroides stercoris HJ-15, isolated from human intestine, which produces three kinds of heparinases. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, DEAE-cellulose, CM-Sephadex C-50, hydroxyapatite, and HiTrap SP chromatographies with a final specific activity of 19.5 mmol/min/mg. It showed optimal activity at pH 7.2 and 45 degrees C and the presence of 300 mM KCl greatly enhanced its activity. The purified enzyme activity was inhibited by Cu(2+), Pb(2+), and some agents that modify histidine and cysteine residues, and activated by reducing agents such as dithiothreitol and 2-mercaptoethanol. This purified Bacteroides heparinase is an eliminase that shows its greatest activity on bovine intestinal heparan sulfate, and to a lesser extent on porcine intestinal heparan sulfate and heparin. This enzyme does not act on acharan sulfate but de-O-sulfated acharan sulfate and N-sulfoacharan sulfate were found to be poor substrates. The substrate specificity of this enzyme is similar to that of Flavobacterial heparinase II. However, an internal amino acid sequence of the purified Bacteroides heparinase shows significant (73%) homology to Flavobacterial heparinase III and only 43% homology to Flavobacterial heparinase II. These findings suggest that the Bacteroidal heparinase is a novel enzyme degrading GAGs.  相似文献   

3.
Two novel chondroitinases, chondroitin ABC lyase (EC 4.2.2.4) and chondroitin AC lyase (EC 4.2.2.5), have been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with glycosaminoglycan degrading enzymes. Chondroitin ABC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and Sephacryl S-300 column chromatography with a final specific activity of 45.7 micromol.min-1.mg-1. Chondroitin AC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and phosphocellulose column chromatography with a final specific activity of 57.03 micromol.min-1.mg-1. Chondroitin ABC lyase is a single subunit of 116 kDa by SDS/PAGE and gel filtration. Chondroitin AC lyase is composed of two identical subunits of 84 kDa by SDS/PAGE and gel filtration. Chondroitin ABC and AC lyases showed optimal activity at pH 7.0 and 40 degrees C, and 5.7-6.0 and 45-50 degrees C, respectively. Both chondroitin lyases were potently inhibited by Cu2+, Zn2+, and p-chloromercuriphenyl sulfonic acid. The purified Bacteroidal chondroitin ABC lyase acted to the greatest extent on chondroitin sulfate A (chondroitin 4-sulfate), to a lesser extent on chondroitin sulfate B (dermatan sulfate) and C (chondroitin 6-sulfate). The purified chondroitin AC lyase acted to the greatest extent on chondroitin sulfate A, and to a lesser extent on chondroitin C and hyaluronic acid. They did not act on heparin and heparan sulfate. These findings suggest that the biochemical properties of these purified chondroitin lyases are different from those of the previously purified chondroitin lyases.  相似文献   

4.
Aims:  This study focused on the cloning, expression and characterization of recombinant heparinase II (rHepII) from Bacteroides stercoris HJ-15.
Methods and Results:  The heparinase II gene from Bact. stercoris HJ-15 was identified by Southern blotting and the sequence was deposited in GenBank. The gene was cloned and overexpressed in Escherichia coli , and rHepII was purified using two simple ion–exchange column chromatography steps. Enzymatic properties and substrate specificities of rHepII were assessed and its kinetic constants were calculated. Heparin-like glycosaminoglycans (HLGAGs) were digested with rHepII under optimal reaction conditions, and the products were analysed by SAX-HPLC.
Conclusions:  The heparinase II gene is 2322-bp long and consists of 773 amino acids. rHepII is most active in 50 mmol l−1 sodium phosphate buffer with 75 mmol l−1 NaCl (pH 7·4) at 32°C, and the activity is stable at 4°C for 15 days on storage. Acharan sulfate is the best substrate for rHepII, followed by heparan sulfate and heparin. The major degradation products were verified as highly sulfated disaccharides through SAX-HPLC analysis. It means that rHepII prefers iduronic acid over glucuronic acid on the HLGAG structure.
Significance and Impact of the Study:  This study provides easy and certain means for obtaining large amounts of pure rHepII and also provides important information regarding the tendencies of this enzyme and its digested products. rHepII digests HLGAGs in a different manner than heparinases from Flavobacterium heparinum ; therefore, we anticipate that rHepII will be a powerful tool for studies of GAGs and GAGs lyases.  相似文献   

5.
Heparin lyase I was purified to homogeneity from Bacteroides stercoris HJ-15 isolated from human intestine, by a combination of DEAE-Sepharose, gel-filtration, hydroxyapatite, and CM-Sephadex C-50 column chromatography. This enzyme preferred heparin to heparan sulfate, but was inactive at cleaving acharan sulfate. The apparent molecular mass of heparin lyase I was estimated as 48,000 daltons by SDS-PAGE and its isoelectric point was determined as 9.0 by IEF. The purified enzyme required 500 mM NaCl in the reaction mixture for maximal activity and the optimal activity was obtained at pH 7.0 and 50 degrees C. It was rather stable within the range of 25 to 50 degrees C but lost activity rapidly above 50 degrees C. The enzyme was activated by Co(2+) or EDTA and stabilized by dithiothreitol. The kinetic constants, K(m) and V(max) for heparin were 1.3 10(-5) M and 8.8 micromol/min.mg. The purified heparin lyase I was an eliminase that acted best on porcine intestinal heparin, and to a lesser extent on porcine intestinal mucosa heparan sulfate. It was inactive in the cleavage of N-desulfated heparin and acharan sulfate. In conclusion, heparin lyase I from Bacteroides stercoris was specific to heparin rather than heparan sulfate and its biochemical properties showed a substrate specificity similar to that of Flavobacterial heparin lyase I.  相似文献   

6.
Recombinant heparinase III (rHepIII) from Bacteroides stercoris HJ-15 was cloned, expressed, and characterized. The full-length heparinase III gene from B. stercoris HJ-15 was identified by Southern blotting, and the sequence was deposited in GenBank. The heparinase III gene, which is 2,001-bp long, was cloned and overexpressed in Escherichia coli; highly active rHepIII was easily purified using only one step of immobilized Ni2+ affinity column chromatography. Enzymatic properties and substrate specificities of rHepIII were assessed, and its kinetic constants were calculated. rHepIII was most active in 50 mM sodium phosphate buffer with 350 mM NaCl (pH 6.6) at 45°C. Through amino acid modification studies and site-directed mutagenesis assay, cysteines and histidines were identified as crucial residues for enzymatic activity. Moreover, this enzyme digested not only heparan sulfate but also heparin and hyaluronic acid, and their degradation products were verified by strong anion exchange/high-performance liquid chromatography. These characteristics, including active residues and substrate specificities were interesting compared with those of existing heparinase III from other species. We anticipate that the convenience of purification and the characteristics of this enzyme will make it a powerful tool for studies of glycosaminoglycans and their lyases.  相似文献   

7.
Enzymes that degrade glycosaminoglycans (GAGs) can help reveal the biological roles, structure, and mechanisms of GAGs. We cloned chondroitinase AC, which can degrade chondroitin sulfates A and C, from the genomic library of Bacteroides stercoris HJ-15 isolated from human intestine. The probe (1.4 kb) for the chondroitinase AC gene was prepared from the PCR product of the primers produced using two internal amino acid sequences of chondroitinase AC purified from B. stercoris HJ-15. Using this probe, a chondroitinase AC-positive, 4 kb DNA fragment was selected from pKF3 vector gene libraries containing 2.5–4.5 kb DNA fragments digested with HindIII. The amino acid sequence of the cloned chondroitinase AC showed 41% homology to that of Flavobacterium heparinum. The cloned chondroitinase AC gene was expressed under the T7 promoter of the expression vector, pET-26b(+), in Escherichia coli BL21(DE3) and purified using His bind column chromatography. The expressed chondroitinase AC potently degraded chondroitin sulfates A and C.  相似文献   

8.
Two chondroitin lyases were isolated from the colon anaerobe Bacteroides thetaiotaomicron. Both enzymes had similar molecular weights (104,000 and 108,000) and similar isoelectric points (8.0 and 7.9, respectively). Both enzymes were active against chondroitin sulfates A, B, and C and unsulfated polysaccharides, such as chondroitin and hyaluronic acid, although one of the enzymes was twice as active against chondroitin as the other enzyme. Both had similar Km values for chondroitin sulfates A and C (40 to 70 micrograms/ml) and for chondroitin (300 to 400 micrograms/ml). Neither enzyme could degrade the highly sulfated mucopolysaccharide heparin, but heparin was a potent inhibitor of the activity of both enzymes. Although enzymes I and II were similar in many respects, a comparison of peptides resulting from partial digestion with N-chlorosuccinimide or papain demonstrated that the two proteins are not related.  相似文献   

9.
Heparin lyase I has been purified from Flavobacterium heparinum and has been partially characterized (Yang, V. C., Linhardt, R. J., Berstein, H., Cooney, C. L., and Langer, R. (1985) J. Biol. Chem. 260, 1849-1857). There has been no report of the purification of the other polysaccharide lyases from this organism. Although all three of these heparin/heparan sulfate lyases are widely used, with the exception of heparin lyase I, there is no information on their purity or their physical and kinetic characteristics. The absence of pure heparin lyases and a lack of understanding of the optimal catalytic conditions and substrate specificity has stood in the way of the use of these enzymes as reagents for the specific depolymerization of heparin and heparan sulfate into oligosaccharides for structure and activity studies. This paper describes a single, reproducible scheme to simultaneously purify all three of the heparin lyases from F. heparinum to apparent homogeneity. Heparin lyase I (heparinase, EC 4.2.2.7), heparin lyase II (no EC number), and heparin lyase III (heparitinase, EC 4.2.2.8) have molecular weights (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and isoelectric points (by isoelectric focusing) of M(r) 42,800, pI 9.1-9.2, M(r) 84,100, pI 8.9-9.1, M(r) 70,800, pI 9.9-10.1, respectively. Their amino acid analyses and peptide maps demonstrate that while these proteins are different gene products they are closely related. The kinetic properties of the heparin lyases have been determined as well as the conditions to optimize their activity and stability. These data should improve the application of these important enzymes in the study of heparin and heparan sulfate.  相似文献   

10.
Bacteroides ovatus, a human colonic anaerobe, utilizes the galactomannan guar gum as a sole source of carbohydrate. Previously, we found that none of the galactomannan-degrading enzymes were extracellular, and we characterized an outer membrane mannanase which hydrolyzes the backbone of guar gum to produce large fragments. We report here the purification and characterization of a second mannanase from B. ovatus. This enzyme is cell-associated and soluble. Using ion-exchange chromatography, gel filtration, and chromatofocusing steps, we have purified the soluble mannanase to apparent homogeneity. The enzyme has a native molecular weight of 190,000 and a monomeric molecular weight of 61,000. It is distinct from the membrane mannanase not only with respect to cellular location but also with respect to stability and isoelectric point (pI of 6.9 for the membrane mannanase and pI of 4.8 for the soluble mannanase). The soluble mannanase, like the membrane mannanase, hydrolyzed guar gum to produce large fragments rather than monosaccharides. However, if galactosyl side chains were removed from the galactomannan fragments by alpha-galactosidase, both the soluble mannanase and the membrane mannanase could degrade guar gum to monosaccharides. Thus either or both of these two enzymes, working together with alpha-galactosidase, appear to be sufficient for the breakdown of guar gum to the level of monosaccharides.  相似文献   

11.
Fimbriae and their constituent protein (fimbrilin) were purified to homogeneity from the bacterial wash fluid and cell lysate fraction, respectively, of Bacteroides gingivalis 381. Fimbriae, observed by negative staining, were curly, single-stranded filaments with a diameter of ca. 5 nm. The apparent molecular weight of the fimbrilin was 43,000. Fimbriae were resistant to sodium dodecyl sulfate denaturation at 70 degrees C. Heating at 100 degrees C in sodium dodecyl sulfate was needed to completely dissociate them to monomers of fimbrilin. Different sets of antigenic determinants seemed to be exposed on the surfaces of fimbriae and sodium dodecyl sulfate-denatured fimbrilin. Purified fimbriae did not show either hemagglutinating activity or hemagglutination inhibitory activity, although it has been inferred on the basis of circumstantial evidence that fimbriae are correlated to hemagglutinating activity of the organism. Hemagglutinin activity, however, was detected in culture supernatant, and this observation suggests that fimbriae of a different type or a lectin-like protein may be acting as hemagglutinin in B. gingivalis.  相似文献   

12.
We isolated four nitroreductases from Bacteroides fragilis GAI0624 and examined their physicochemical and functional properties. Two major enzyme activities were found in the adsorbed and unadsorbed fractions from DEAE-cellulose column chromatography. The adsorbed fraction was subjected to Sephadex G-200 column chromatography, and two further activities were separated. One has high nitroreductase activity (nitroreductase I), and the other has low activity and relatively high molecular weight (nitroreductase III). The nitroreductase I fraction was subjected to hydroxylapatite and chromatofocusing column chromatography, and nitroreductase I was purified about 416-fold with a yield of 6.77%. The unadsorbed fraction from DEAE-cellulose column chromatography was subjected to Sepharose 2B and Sepharose 6B column chromatography. Two enzyme activities were obtained by the Sepharose 6B column chromatography. One has high activity (nitroreductase II), and the other has low activity (nitroreductase IV). Nitroreductase II was rechromatographed by Sepharose 6B gel filtration and purified about 178-fold with a yield of 9.65%. The four enzymes (nitroreductases I, II, III, and IV) were shown to be different by several criteria. Their molecular weights, determined by gel filtration, were 52,000, 320,000, 180,000, and 680,000, respectively. The substrate specificity, the effect on mutagenicity of mutagenic nitro compounds, of nitroreductases I, III, and IV was relatively high for 1-nitropyrene, dinitropyrenes, and 4-nitroquinoline 1-oxide, respectively, but nitroreductase II had broad specificity. Nitroreductase activity required a coenzyme; nitroreductases II, III, and IV were NADPH linked, but nitroreductase I was NADH linked. All enzyme activity was enhanced by addition of flavin mononucleotide and inhibited significantly by dicumarol, p-chloromercuribenzoic acid, o-iodosobenzoic acid, sodium azide, and Cu2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A sialidase from Bacteroides fragilis SBT3182 was purified 2,240-fold to apparent homogeneity by ammonium sulfate precipitation and sequential chromatographies on DEAE-Toyopearl 650M, Hydroxyapatite, MonoS and Superose6 columns. The N-terminal amino acid sequence of this sialidase, Ala-Asp-X-Ile-Phe-Val-Arg-Glu-Thr-Arg-Ile-Pro-, was determined. Substrate specificity of this enzyme using a variety of sialoglycoconjugates showed a 1.5- and 2.2-fold preference for sialyl alpha 2-8 linkages when compared with alpha 2-3 and alpha 2-6 bound sialic acids, respectively. The native sialidase had a molecular weight of 165kDa, as determined by Superose6 gel filtration chromatography and consisted of three subunits each of 55kDa by SDS-polyacrylamide gel electrophoresis. This enzyme had optimal activity at pH6.1 with colominic acid as substrate.  相似文献   

14.
We isolated four nitroreductases from Bacteroides fragilis GAI0624 and examined their physicochemical and functional properties. Two major enzyme activities were found in the adsorbed and unadsorbed fractions from DEAE-cellulose column chromatography. The adsorbed fraction was subjected to Sephadex G-200 column chromatography, and two further activities were separated. One has high nitroreductase activity (nitroreductase I), and the other has low activity and relatively high molecular weight (nitroreductase III). The nitroreductase I fraction was subjected to hydroxylapatite and chromatofocusing column chromatography, and nitroreductase I was purified about 416-fold with a yield of 6.77%. The unadsorbed fraction from DEAE-cellulose column chromatography was subjected to Sepharose 2B and Sepharose 6B column chromatography. Two enzyme activities were obtained by the Sepharose 6B column chromatography. One has high activity (nitroreductase II), and the other has low activity (nitroreductase IV). Nitroreductase II was rechromatographed by Sepharose 6B gel filtration and purified about 178-fold with a yield of 9.65%. The four enzymes (nitroreductases I, II, III, and IV) were shown to be different by several criteria. Their molecular weights, determined by gel filtration, were 52,000, 320,000, 180,000, and 680,000, respectively. The substrate specificity, the effect on mutagenicity of mutagenic nitro compounds, of nitroreductases I, III, and IV was relatively high for 1-nitropyrene, dinitropyrenes, and 4-nitroquinoline 1-oxide, respectively, but nitroreductase II had broad specificity. Nitroreductase activity required a coenzyme; nitroreductases II, III, and IV were NADPH linked, but nitroreductase I was NADH linked. All enzyme activity was enhanced by addition of flavin mononucleotide and inhibited significantly by dicumarol, p-chloromercuribenzoic acid, o-iodosobenzoic acid, sodium azide, and Cu2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A mucopolysaccharidase in the cell extract of an oral strain of Bacteroides sp. was purified to homogeneity by ammonium sulfate precipitation, DEAE-cellulose column chromatography, gel filtration on Sephadex G-200, and isoelectric focusing. Specific activity increased 110-fold and recovery was 2%. The molecular weight was determined to be 89,000 by gel filtration, and the isoelectric point was 7.0. The optimum pH for the activity was 6.5. The enzyme was inactivated by heating at 60 degrees C for 5 min. The purified mucopolysaccharidase degraded hyaluronic acid more rapidly than chondroitin and chondroitin sulfate A and C. However, it had no activity against chondroitin sulfate B, heparin, and heparan sulfate. Since unsaturated disaccharides were derived from the enzyme substrate, this enzyme was considered to be a mucopolysaccharide lyase.  相似文献   

16.
A cellobiosidase with unique characteristics from the extracellular culture fluid of the anaerobic gram-negative cellulolytic rumen bacterium Bacteroides succinogenes grown on microcrystalline cellulose (Avicel) in a continuous culture system was purified to homogeneity by column chromatography. The enzyme was a glycoprotein with a molecular weight of approximately 75,000 and an isoelectric point of 6.7. When assayed at 39 degrees C and pH 6.5, the activity of the enzyme with p-nitrophenyl-beta-D-cellobioside as the substrate was stimulated by chloride, bromide, fluoride, iodide, nitrate, and nitrite, with maximum activation (approximately sevenfold) occurring at concentrations ranging from 1.0 mM (Cl-) to greater than 0.75 M (F-). The presence of chloride (0.2 M) did not affect the Km but doubled the Vmax. In the presence of chloride (0.2 M), the pH optimum of the enzyme was broadened, and the temperature optimum was increased from 39 to 45 degrees C. The enzyme released terminal cellobiose from cellotriose and cellobiose and cellotriose from longer-chain-length cellooligosaccharrides and acid-swollen cellulose, but it had no activity on cellobiose. The enzyme showed affinity for cellulose (Avicel) but did not hydrolyze it. It also had a low activity on carboxymethyl cellulose.  相似文献   

17.
A high-molecular-weight (250 000) bile salt hydrolase (cholylglycine hydrolase, EC 3.5.-.-) was isolated and purified 128-fold from the "spheroplast lysate" fraction prepared from Bacteroids fragilis subsp. fragilis ATCC 25285. The intact enzyme had a molecular weight of approx. 250 000 as determined by gel infiltration chromatography. One major protein band, corresponding to a molecular weight of 32 500, was observed on 7% sodium dodecyl sulfate polyacrylamide gel electrophoresis of pooled fractions from DEAE-cellulose column chromatography (128-fold purified). The pH optimum for the 64-fold purified enzyme isolated from Bio-Gel A 1.5 M chromatography was 4.2 and bile salt hydrolase activity measured in intact cell suspensions had a pH optimum of 4.5. Substrate specificity studies indicated that taurine and glycine conjugates of cholic acid, chenodeoxycholic acid and deoxycholic acid were readily hydrolyzed; however, lithocholic acid conjugates were not hydrolyzed. Substrate saturation kinetics were biphasic with an intermediate plateau (0.2--0.3 mM) and a complete loss of enzymatic activity was observed at high concentration for certain substrates. The presence or absence of 7-alpha-hydroxysteroid dehydrogenase was absolutely correlated with that of bile salt hydrolase activity in six to ten strains and subspecies of B. fragilis.  相似文献   

18.
Keratan sulfate (KS) is degraded by various enzymes including endo-beta-galactosidase, keratanase, and keratanase II, which are used for the structural analysis of KS. We purified a novel KS hydrolase, endo-beta-N-acetylglucosaminidase, from the cell pellet and conditioned medium of Bacillus circulans, by sequential chromatography using DE52 and phenyl-Sepharose columns with approximately 63- and 180-fold purity and 58 and 12.5% recovery, respectively. Like keratanase II of Bacillus sp. Ks36, the enzyme, designated Bc keratanase II, hydrolyzed KS between the 4GlcNAcbeta1-3Gal1 structure (endo-beta-N-acetylglucosaminidase), but not hyaluronan, heparan sulfate, heparin, and chondroitin sulfate C, demonstrating a strict specificity to KS. The enzyme digested shark cartilage KS to disaccharides and tetrasaccharides and bovine cornea KS to hexasaccharide, indicating that it prefers highly sulfated KS. Distinct from keratanase II of strain Ks36, the enzyme digested shark cartilage KS at an optimal temperature of 55 degrees C. Based on partial peptide sequencing of the enzyme, we molecularly cloned the gene, which encodes a protein with a predicted molecular mass of approximately 200 kDa. From the deduced protein sequence, Bc keratanase II contained a domain at the C terminus, homologous to the S-layer-like domain of pullulanase from Thermoanaerobacterium thermosulfurigenes and endoxylanase from Thermoanaerobacterium saccharolyticum, and a carbohydrate-binding domain, which may serve to specifically recognize KS chains. A full-length recombinant enzyme showed keratanase II activity. These results may prove useful for the structural analysis of KS toward achieving an understanding of its function.  相似文献   

19.
The structures of a series of large oligosaccharides derived from acharan sulfate were characterized. Acharan sulfate is an unusual glycosaminoglycan isolated from the giant African snail, Achatina fulica. Oligosaccharides from decasaccharide to hexadecasaccharide were enzymatically prepared using heparin lyase II and purified. Capillary electrophoresis and gel electrophoresis confirmed the purity of these oligosaccharides. Their structures, determined by ESI-MS and NMR, were consistent with the major repeating sequence in acharan sulfate, -->4)-alpha-d-GlcN(p)Ac-(1-->4)-alpha-l-IdoA(p)2S-(1-->, terminated by 4-linked alpha-d-GlcN(p)Ac residue at the reducing end and by 4,5-unsaturated pyranosyluronic acid 2-sulfate at the non-reducing end.  相似文献   

20.
《Process Biochemistry》2007,42(8):1229-1236
A protease, producing bacterial culture (isolate ‘C’) was obtained from slaughterhouse waste samples, Hyderabad, India. It was related to Serratia rubidaea on the basis of 16S r RNA gene sequencing and biochemical properties. Cultural characters of S. rubidaea identified it as a psychrophile secreting protease at 10–30 °C. Single step purification of culture supernatant on sephacryl S-100 column revealed two proteases CP-1 and CP-2. The molecular masses of the enzymes determined by SDS-PAGE and zymography were approximately 97 and 45 kDa, respectively. N-terminal sequencing of CP-1 revealed a novel surface protein of S. rubidaea and CP-2 protease has shown 100% homology with protease of Serratia sp. A fold purification of 1.5 with 54% recovery was achieved in CP1 and purification of CP-2 resulted in 88% yield with a fold purification of 2. The optimum pH values of CP-1 and CP-2 were shown to be 10 and 8, respectively. The maximum activities for the enzymes were at 40 °C and 30 °C. Both the proteases are inhibited by EDTA indicating that they are metallo proteases. The activity of CP-1 was enhanced with Cu2+ that of CP-2 was enhanced with Zn2+ and Ca2+. These proteases have stability in presence of detergents, surfactants and solvents. These properties make these proteases an ideal choice for application in detergent formulations, food, leather industries, vaccine and enzyme peptide synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号