首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Thymidine kinase (EC 2.7.1.21) from regenerating rat liver has been purified 70,000-fold to apparent homogeneity by affinity chromatography. Molecular weight of the native enzyme was found to be about 54,000, as determined by gel filtration. Electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate yielded a single band with a molecular weight of 26,000, suggesting that thymidine kinase is a dimer of very similar or identical subunits. The Michaelis constant for thymidine is 2.2 microM. ATP acts as a sigmoidal substrate with a 'Km' of 0.2 mM. Reaction kinetics and product inhibition studies reveal the enzymatic mechanism to be sequential.  相似文献   

3.
4.
5.
6.
Two forms (Peak A and Peak B) of thymidine kinase [EC 2.7.1.75] from regenerating rat liver cytosol were resolved and partially purified by Deae-cellulose chromatography. Both fractions were identical with respect to their substrate requirement, pH optima, metal requirements, and molecular weight, as judged by their sedimentation in sucrose density gradient centrifugation. Peak B differed from Peak A in heat sensitivity, inhibition by dCTP and Km for thymidine and ATP. Peak B enzyme was the only enzyme found in normal adult liver and Peak A enzyme was the form increasing predominantly in regenerating liver.  相似文献   

7.
In non-proliferating cells mitochondrial (mt) thymidine kinase (TK2) salvages thymidine derived from the extracellular milieu for the synthesis of mt dTTP. TK2 is a synthetic enzyme in a network of cytosolic and mt proteins with either synthetic or catabolic functions regulating the dTTP pool. In proliferating cultured cells the canonical cytosolic ribonucleotide reductase (R1-R2) is the prominent synthetic enzyme that by de novo synthesis provides most of dTTP for mt DNA replication. In non-proliferating cells p53R2 substitutes for R2. Catabolic enzymes safeguard the size of the dTTP pool: thymidine phosphorylase by degradation of thymidine and deoxyribonucleotidases by degradation of dTMP. Genetic deficiencies in three of the participants in the network, TK2, p53R2, or thymidine phosphorylase, result in severe mt DNA pathologies. Here we demonstrate the interdependence of the different enzymes of the network. We quantify changes in the size and turnover of the dTTP pool after inhibition of TK2 by RNA interference, of p53R2 with hydroxyurea, and of thymidine phosphorylase with 5-bromouracil. In proliferating cells the de novo pathway dominates, supporting large cytosolic and mt dTTP pools, whereas TK2 is dispensable, even in cells lacking the cytosolic thymidine kinase. In non-proliferating cells the small dTTP pools depend on the activities of both R1-p53R2 and TK2. The activity of TK2 is curbed by thymidine phosphorylase, which degrades thymidine in the cytoplasm, thus limiting the availability of thymidine for phosphorylation by TK2 in mitochondria. The dTTP pool shows an exquisite sensitivity to variations of thymidine concentrations at the nanomolar level.  相似文献   

8.
9.
10.
An activated S6 kinase in regenerating rat liver   总被引:1,自引:0,他引:1  
S6 kinase activity was increased in the regenerating liver 5 h after partial hepatectomy compared with sham-operated liver. The protein kinase activity was eluted from DE-52 column at approximately 250 mM NaCl and was not affected by known regulators of protein kinases. The S6 kinase was further purified by chromatography on peptide R1A13-Sepharose 4B and Sephadex G-150. The molecular weight of the enzyme was estimated to be 4.5 X 10(4) by gel filtration. The enzyme catalyzes the phosphorylation of whole histone, mainly H2B histone, at 75 mM Mg2+. These properties are similar to those of a proteolytically modified Ca2+/phospholipid-independent form of protein kinase C.  相似文献   

11.
The liver possesses the capacity to restore its function and mass after injury. Liver regeneration is controlled through complicated mechanisms, in which the phosphoinositide (PI) cycle is shown to be activated in hepatocytes. Using a rat partial hepatectomy (PH) model, the authors investigated the expression of the diacylglycerol kinase (DGK) family, a key enzyme in the PI cycle, which metabolizes a lipid second-messenger diacylglycerol (DG). RT-PCR analysis shows that DGKζ and DGKα are the major isozymes in the liver. Results showed that in the process of regeneration, the DGKζ protein, which is detected in the nucleus of a small population of hepatocytes in normal liver, is significantly increased in almost all hepatocytes. However, the mRNA levels remain largely unchanged. Double labeling with bromodeoxyuridine (BrdU), an S phase marker, reveals that DGKζ is expressed independently of DNA synthesis or cell proliferation. However, DGKα protein localizes to the cytoplasm in normal and regenerating livers, but immunoblot analysis reveals that the expected (80 kDa) and the lower (70 kDa) bands are detected in normal liver, whereas at day 10 after PH, the expected band is solely recognized, showing a different processing pattern of DGKα in liver regeneration. These results suggest that DGKζ and DGKα are involved, respectively, in the nucleus and the cytoplasm of hepatocytes in regenerating liver.  相似文献   

12.
DNA synthesis in regenerating liver was studied to determine whether the onset of stimulated DNA synthesis preceded the onset of increased incorporation of thymidine into DNA. Thymidine incorporation into hepatic DNA was not stimulated 15 h after operation, but was stimulated after 18 h; peak stimulation occurred 30 h after operation. Thymidine kinase activity was stimulated 24 h after operation; highest kinase activity was observed at 36 h. The onset of stimulated DNA synthesis was estimated by following the incorporation of labeled aspartic acid, sodium formate, adenine or orotic acid into appropriate DNA bases, viz., thymine, adenine, adenine or cytosine, respectively. Incorporation of adenine and orotic acid was stimulated between 15 h and 18 h after operation; incorporation of aspartic acid and sodium formate was stimulated between 18 h and 21 h after operation.The incorporation of thymidine into DNA was accelerated by stress stimulus and was inhibited by hydrocortisone. Changes in thymidine kinase activity also were correspondingly accelerated or delayed. Incorporation of labeled thymidine, adenine, formate, orotic acid or thymine into appropriate DNA bases, viz., thymine, adenine, adenine, cytosine or thymine, respectively, was stimulated by stress stimulus or was inhibited by hydrocortisone.It was concluded from these data that stimulation of DNA synthesis and of thymidine incorporation into DNA was essentially synchronized in regenerating rat liver. Results from this study were compared with results from similar studies in 2 other tissues, and the limitations, attendant with using thymidine incorporation into DNA as an indicator of stimulated DNA synthesis, were discussed.  相似文献   

13.
S Yanagi  V R Potter 《Life sciences》1977,20(9):1509-1519
The changes in activity of five enzymes including ornithine decarboxylase (ODC), tyrosine aminotransferase (TAT), thymidine kinase (TK), ornithine aminotransferase (OAT) and serine dehydratase (SDH) in the early stage of the regenerating rat liver have been studied under a controlled feeding and lighting schedule. The first three enzyme activities were stimulated sequentially by partial hepatectomy. The earliest response was observed in ODC activity. A significant increase in this enzyme activity was observed at 2 hrs and the maximal level was at 4 hrs after the operation. TAT began to increase at 4 hrs and the maximal level was at 8 hrs. The TK activity was induced at about 24 hrs and the highest value was at 48 hrs after partial hepatectomy.A significant decrease in OAT activity was observed at 24 hrs after the operation and subsequently. Although a decrease in SDH activity was also observed this decrease did not seem to correlate directly with the regeneration process, since a lowered level of the enzyme activity was also found in the sham operated group.  相似文献   

14.
The expression of multiple forms of protein kinase C (PK-C) was studied in regenerating rat liver using hydroxyapatite column chromatography. Two forms of the enzyme were found in the cytosolic as well as membrane fraction of livers from partially hepatectomized rats. The kinetic variation in the activation of these two liver isozymes by fatty acids, phosphatidylserine and diacylglycerol was similar to that reported for the PK-C subspecies from rat brain, designated types II and III. Intracellular redistribution of PK-C caused by phorbol 12-myristate 13-acetate (PMA) was concentration-dependent and was due to translocation of isozyme III, because type II was insensitive to 5 x 10(-8) M PMA. The activity ratio of the two isozymes in either the particulate or cytosolic fraction was the same at 22 h as compared to 4 h after partial hepatectomy.  相似文献   

15.
Studies on thymidine kinase of human liver cells in culture   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
18.
The ratio NAD+/NADH in cytoplasm and mitochondria of chicken embryo liver does not change up to the stage of hatching. After the hatching this ratio decreases 2-fold in both cytoplasm and mitochondria. The hatching is also accompanied by the decrease of total and mitochondrial contents of oxaloacetate and of oxaloacetate/malate ratio, the activity of citrate synthase and the ratio acetyl-CoA/CoA being unchanged.  相似文献   

19.
The fetal isoenzyme of thymidine kinase was purified to apparent homogeneity from cytosols of rat fetuses liver. A two-step purification including anion exchange chromatography and affinity chromatography was developed. The purified enzyme appears as oligomeric with a relative molecular weight of 71 kDa. In denaturing media its molecular weight was 24 kDa, and its pHi 8.3.  相似文献   

20.
Thymidine kinase activity has been demonstrated in purified mitochondria prepared from animal tissue, wild-type tissue culture cells, and BrdU-resistant cell lines. The BrdU-resistant cell lines lack a soluble cytoplasmic thymidine kinase present in wild-type cells, but continue to exhibit the minor mitochondrial activity. This elucidates the mechanism by which mitochondrial DNA is exclusively labeled in BrdU-resistant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号