首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proper formation and function of the vertebrate heart requires a multitude of specific cell and tissue interactions. These interactions drive the early specification and assembly of components of the cardiovascular system that lead to a functioning system before the attainment of the definitive cardiac and vascular structures seen in the adult. Many of these adult structures are hypothesized to require both proper molecular and physical cues to form correctly. Unlike any other organ system in the embryo, the cardiovascular system requires concurrent function and formation for the embryo to survive. An example of this complex interaction between molecular and physical cues is the formation of the valves of the heart. Both molecular cues that regulate cell transformation, migration, and extracellular matrix deposition, and physical cues emanating from the beating heart, as well as hemodynamic forces, are required for valvulogenesis. This review will focus on molecules and emerging pathways that guide early events in valvulogenesis.  相似文献   

2.
BMP signaling is required for heart formation in vertebrates   总被引:7,自引:0,他引:7  
In these studies, we have taken advantage of a transient transgenic strategy in Xenopus embryos to demonstrate that BMP signaling is required in vivo for heart formation in vertebrates. Ectopic expression of dominant negative Type I (tALK3) or Type II (tBMPRII) BMP receptors in developing Xenopus embryos results in reduction or absence of heart formation. Additionally, blocking BMP signaling in this manner downregulates expression of XNkx2-5, a homeobox gene required for cardiac specification, prior to differentiation. Notably, however, initial expression of XNkx2-5 is not affected. Mutant phenotypes can be rescued by co-injection of mutant with wild-type receptors or co-injection of mutant receptors with XSmad1, a downstream mediator of BMP signaling. Whole-mount in situ analyses indicate that ALK3 and XSmad1 are coexpressed in cardiogenic regions. Together, our results demonstrate that BMP signaling is required for maintenance of XNkx2-5 expression and heart formation and suggest that ALK3, BMPRII, and XSmad1 may mediate this signaling.  相似文献   

3.
4.
In human mitochondria, polyadenylation of mRNA, undertaken by the nuclear-encoded mitochondrial poly(A) RNA polymerase, is essential for maintaining mitochondrial gene expression. Our molecular investigation of an autosomal-recessive spastic ataxia with optic atrophy, present among the Old Order Amish, identified a mutation of MTPAP associated with the disease phenotype. When subjected to poly(A) tail-length assays, mitochondrial mRNAs from affected individuals were shown to have severely truncated poly(A) tails. Although defective mitochondrial DNA maintenance underlies a well-described group of clinical disorders, our findings reveal a defect of mitochondrial mRNA maturation associated with human disease and imply that this disease mechanism should be considered in other complex neurodegenerative disorders.  相似文献   

5.
BMP signaling is required for normal thymus development   总被引:5,自引:0,他引:5  
The microenvironment of the thymus fosters the generation of a diverse and self-tolerant T cell repertoire from a pool of essentially random specificities. Epithelial as well as mesenchymal cells contribute to the thymic stroma, but little is known about the factors that allow for communication between the two cells types that shape the thymic microenvironment. In this study, we investigated the role of bone morphogenetic protein (BMP) signaling in thymus development. Transgenic expression of the BMP antagonist Noggin in thymic epithelial cells under the control of a Foxn1 promoter in the mouse leads to dysplastic thymic lobes of drastically reduced size that are ectopically located in the neck at the level of the hyoid bone. Interestingly, the small number of thymocytes in these thymic lobes develops with normal kinetics and shows a wild-type phenotype. Organ initiation of the embryonic thymic anlage in these Noggin transgenic mice occurs as in wild-type mice, but the tight temporal and spatial regulation of BMP4 expression is abrogated in subsequent differentiation stages. We show that transgenic Noggin blocks BMP signaling in epithelial as well as mesenchymal cells of the thymic anlage. Our data demonstrate that BMP signaling is crucial for thymus development and that it is the thymic stroma rather than developing thymocytes that depends on BMP signals.  相似文献   

6.
The upregulation of TGF-beta1 and integrin expression during wound healing has implicated these molecules in this process, but their precise regulation and roles remain unclear. Here we report that, notably, mice lacking beta(3)-integrins show enhanced wound healing with re-epithelialization complete several days earlier than in wild-type mice. We show that this effect is the result of an increase in TGF-beta1 and enhanced dermal fibroblast infiltration into wounds of beta(3)-null mice. Specifically, beta(3)-integrin deficiency is associated with elevated TGF-beta receptor I and receptor II expression, reduced Smad3 levels, sustained Smad2 and Smad4 nuclear localization and enhanced TGF-beta1-mediated dermal fibroblast migration. These data indicate that alpha(v)beta(3)-integrin can suppress TGF-beta1-mediated signaling, thereby controlling the rate of wound healing, and highlight a new mechanism for TGF-beta1 regulation by beta(3)-integrins.  相似文献   

7.
Beyond stimulating bone formation, bone morphogenetic proteins (BMPs) are important in development, inflammation, and malignancy of the gut. We have previously shown that BMP7 has a regenerative, anti-inflammatory, and antiproliferative effect on experimental inflammatory bowel disease (IBD) in rats. To further investigate the BMP signaling pathway we monitored the effect of BMP7 therapy on the BMP signaling components in the rat colon during different stages of experimentally induced colitis by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed a significantly decreased BMP7 expression in the acute phase, followed by a significantly increased BMP2 and decreased BMP6 expression during the chronic phase of colitis. BMP7 therapy influenced the expression of several BMPs with the most prominent effect on downregulation of BMP2 and upregulation of BMP4 in the chronic phase of colitis. Importantly, connective tissue growth factor and noggin expression were elevated in the acute stage and significantly decreased upon BMP7 therapy. BMP receptor I expression was unchanged, whereas BMP receptor II was decreased at day 2 and increased at days 14 and 30 of TNBS inflammation. However, an opposite pattern of expression following BMP7 therapy has been observed. BMP7 increased the expression of BR-Smad including Smad3 and Smad4. Inhibitory Smads were increased in colitis and significantly decreased following BMP7 therapy at later stages of the disease. We suggest that BMP signaling was altered during TNBS-induced colitis and was recovered with BMP7 administration, suggesting that IBD is a reversible process.  相似文献   

8.
The epidermal growth factor (EGF)-ErbB signaling network is composed of multiple ligands of the EGF family and four tyrosine kinase receptors of the ErbB family. In higher vertebrates, these four receptors bind a multitude of ligands. Ligand binding induces the formation of various homo- and heterodimers of ErbB, potentially providing for a high degree of signal diversity. ErbB receptors and their ligands are expressed in a variety of tissues throughout development. Recent advances in gene targeting strategies in mice have revealed that the EGF-ErbB signaling network has fundamental roles in development, proliferation, differentiation, and homeostasis in mammals. The heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR/ErbB1) and ErbB4. Recent studies using several mutant mice lacking HB-EGF expression have revealed that HB-EGF has a critical role in normal heart function and in normal cardiac valve formation in conjunction with ErbB receptors. HB-EGF signaling through ErbB2 is essential for the maintenance of homeostasis in the adult heart, whereas HB-EGF signaling through EGFR is required during cardiac valve development. In this review, we introduce and discuss the role of ErbB receptors in heart function and development, focusing on the physiological function of HB-EGF in these processes.  相似文献   

9.
The proto-oncogene Sno has been shown to be a negative regulator of transforming growth factor beta (TGF-beta) signaling in vitro, using overexpression and artificial reporter systems. To examine Sno function in vivo, we made two targeted deletions at the Sno locus: a 5' deletion, with reduced Sno protein (hypomorph), and an exon 1 deletion removing half the protein coding sequence, in which Sno protein is undetectable in homozygotes (null). Homozygous Sno hypomorph and null mutant mice are viable without gross developmental defects. We found that Sno mRNA is constitutively expressed in normal thymocytes and splenic T cells, with increased expression 1 h following T-cell receptor ligation. Although thymocyte and splenic T-cell populations appeared normal in mutant mice, T-cell proliferation in response to activating stimuli was defective in both mutant strains. This defect could be reversed by incubation with either anti-TGF-beta antibodies or exogenous interleukin-2 (IL-2). Together, these findings suggest that Sno-dependent suppression of TGF-beta signaling is required for upregulation of growth factor production and normal T-cell proliferation following receptor ligation. Indeed, both IL-2 and IL-4 levels are reduced in response to anti-CD3 epsilon stimulation of mutant T cells, and transfected Sno activated an IL-2 reporter system in non-T cells. Mutant mouse embryo fibroblasts also exhibited a reduced cell proliferation rate that could be reversed by administration of anti-TGF-beta. Our data provide strong evidence that Sno is a significant negative regulator of antiproliferative TGF-beta signaling in both T cells and other cell types in vivo.  相似文献   

10.
11.
Precise spatial and temporal control of Drosophila Bone Morphogenetic Protein (BMP) signaling is achieved by a host of extracellular factors that modulate ligand distribution and activity. Here we describe Kekkon5 (Kek5), a transmembrane protein containing leucine-rich repeats (LRRs), as a novel regulator of BMP signaling in Drosophila. We find that loss or gain of kek5 disrupts crossvein development and alters the early profile of phosphorylated Mad and dSRF in presumptive crossvein cells. kek5 phenotypic effects closely mimic those observed with Short gastrulation (Sog), but do not completely recapitulate the effects of dominant negative BMP receptors. We further demonstrate that Kek5 is able to antagonize the BMP ligand Glass bottom boat (Gbb) and that the Kek5 LRRs are required for BMP inhibitory activity, while the Ig domain is dispensable in this context. Our identification of Kek5 as a modulator of BMP signaling supports the emerging notion that LIG proteins function as diverse regulators of cellular communication.  相似文献   

12.
Alvarez R  Tripp RA 《Journal of virology》2005,79(10):5971-5978
Human metapneumovirus (HMPV), recently identified in isolates from children hospitalized with acute respiratory tract illness, is associated with clinical diagnosis of pneumonia, asthma exacerbation, and acute bronchiolitis in young children. HMPV has been shown to cocirculate with respiratory syncytial virus (RSV) and mediate clinical disease features similarly to RSV. Little is known regarding the pathophysiology or immune response associated with HMPV infection; thus, animal models are needed to better understand the mechanisms of immunity and disease pathogenesis associated with infection. In this study, we examine features of the innate and adaptive immune response to HMPV infection in a BALB/c mouse model. Primary HMPV infection elicits weak innate and aberrant adaptive immune responses characterized by induction of a Th2-type cytokine response at later stages of infection that coincides with increased interleukin-10 expression and persistent virus replication in the lung. Examination of the cytotoxic T lymphocyte and antibody response to HMPV infection revealed a delayed response, but passive transfer of HMPV-specific antibodies provided considerable protection. These features are consistent with virus persistence and indicate that the immune response to HMPV is unique compared to the immune response to RSV.  相似文献   

13.
14.
Despite recent progress, the mechanisms governing shoot morphogenesis in higher plants are only partially understood. Classical physiological studies have suggested that gradients of the plant growth regulator auxin may play a role in controlling tissue differentiation in shoots. More recent molecular genetic studies have also identified knotted1 like homeobox (knox) genes as important regulators of shoot development. The maize (Zea mays L.) mutant rough sheath2 (rs2) displays ectopic expression of at least three knox genes and consequently conditions a range of shoot and leaf phenotypes, including aberrant vascular development, ligular displacements, and dwarfism (R. Schneeberger, M. Tsiantis, M. Freeling, J.A. Langdale [1998] Development 125: 2857–2865). In this report, we show that rs2 mutants also display decreased polar auxin transport in the shoot. We also demonstrate that germination of wild-type maize seedlings on agents known to inhibit polar auxin transport mimics aspects of the rs2 mutant phenotype. The phenotype elaborated in inhibitor-treated plants is not correlated with ectopic KNOX protein accumulation.  相似文献   

15.
16.
Phospholipase Cepsilon is a novel class of phosphoinositide-specific phospholipase C, identified as a downstream effector of Ras and Rap small GTPases. We report here the first genetic analysis of its physiological function with mice whose phospholipase Cepsilon is catalytically inactivated by gene targeting. The hearts of mice homozygous for the targeted allele develop congenital malformations of both the aortic and pulmonary valves, which cause a moderate to severe degree of regurgitation with mild stenosis and result in ventricular dilation. The malformation involves marked thickening of the valve leaflets, which seems to be caused by a defect in valve remodeling at the late stages of semilunar valvulogenesis. This phenotype has a remarkable resemblance to that of mice carrying an attenuated epidermal growth factor receptor or deficient in heparin-binding epidermal growth factor-like growth factor. Smad1/5/8, which is implicated in proliferation of the valve cells downstream of bone morphogenetic protein, shows aberrant activation at the margin of the developing semilunar valve tissues in embryos deficient in phospholipase Cepsilon. These results suggest a crucial role of phospholipase Cepsilon downstream of the epidermal growth factor receptor in controlling semilunar valvulogenesis through inhibition of bone morphogenetic protein signaling.  相似文献   

17.
The mechanism by which the obese subjects are more associated with vascular disease remains unclear. We reported that the adipose tissues produce and secrete many bioactive molecules, conceptualized as adipocytokines. Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), produced locally by vascular macrophages and smooth muscle cells, has been suggested to induce the migration and proliferation of vascular smooth muscle cells. The current study reveals that (1) HB-EGF mRNA is abundantly expressed in human adipose tissue, (2) HB-EGF mRNA increases in the fat tissues of obese mice, (3) plasma HB-EGF levels increase in parallel with fat accumulation in human, and (4) the subjects with coronary artery disease have higher plasma HB-EGF levels, associated with fat accumulation. These results suggest that increased plasma HB-EGF derived from the accumulated fat contributes to the higher incidence of vascular disease in obesity, proposing HB-EGF as an adipocytokine directly linking adipovascular axis.  相似文献   

18.
BMP signaling is required for development of the ciliary body   总被引:4,自引:0,他引:4  
The ciliary body in the eye secretes aqueous humor and glycoproteins of the vitreous body and maintains the intraocular pressure. The ciliary muscle controls the shape of the lens through the ciliary zonules to focus the image onto the retina. During embryonic development, the ciliary epithelium is derived from the optic vesicle, but the molecular signals that control morphogenesis of the ciliary body are unknown. We report that lens-specific expression of a transgenic protein, Noggin, can block BMP signaling in the mouse eye and result in failure in formation of the ciliary processes. Co-expression of transgenic BMP7 restores normal development of the ciliary epithelium. Ectopic expression of Noggin also promotes differentiation of retinal ganglion cells. These results indicate that BMP signaling is required for development of the ciliary body and may also play a role in regulation of neuronal differentiation in the developing eye.  相似文献   

19.
BMP signaling in skeletal development   总被引:16,自引:0,他引:16  
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号