首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mine I  Anota Y  Menzel D  Okuda K 《Protoplasma》2005,226(3-4):199-206
Summary. The configuration and distribution of polyadenylated RNA (poly(A)+ RNA) during cyst formation in the cap rays of Acetabularia peniculus were demonstrated by fluorescence in situ hybridization using oligo(dT) as a probe, and the spatial and functional relationships between poly(A)+ RNA and microtubules or actin filaments were examined by immunofluorescence microscopy and cytoskeletal inhibitor treatment. Poly(A)+ RNA striations were present in the cytoplasm of early cap rays and associated with longitudinal actin bundles. Cytochalasin D destroyed the actin filaments and caused a dispersal of the striations. Poly(A)+ RNA striations occurred in the cytoplasm of the cap rays up to the stage when secondary nuclei migrated into the cap rays, but they disappeared after the secondary nuclei were settled in their positions. At that time, a mass of poly(A)+ RNA was present around each of the secondary nuclei and accumulated rRNA. This mass colocalized with microtubules radiating from the surface of each secondary nucleus and disappeared when the microtubules were depolymerized by butamifos, which did not affect the configuration of actin filaments. These masses of poly(A)+ RNA continued to exist even after the cap ray cytoplasm divided into cyst domains. Thus two distinct forms of poly(A)+ RNA population, striations and masses, appear in turn at consecutive stages of cyst formation and are associated with distinct cytoskeletal elements, actin filaments and microtubules, respectively. Correspondence and reprints: Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.  相似文献   

2.
Summary Microtubules (MT) are a feature of all eukaryotic cells. However, they have not been observed in the cytoplasm of the vegetative phase ofAcetabularia acetabulum. Previous investigators have reported that, in the propagative phase, MTs function as anchors in the transport of secondary nuclei to the cap. They also form elaborate arrays around nuclei during cyst formation. The life history ofA. acetabulum is marked by changes in chromatin, the nucleolus, and the perinuclear cytoplasm. In this study light microscopical features of the nucleolus and changes in chromatin, labelled with anti-histon antibodies, were used to define the developmental stages. Anti-tubulin antibodies have been used to trace the origin and development of MTs, MTs are formed on the surface of the primary nucleus. They are organized first into short thick sticks and then later elongate into thinner strands which enclose the nucleus in a dense network. Following these events on the surface of the nucleus, the spindle develops inside the nuclear membrane which remains intact throughout the mitotic division.  相似文献   

3.
Perfused cell segments dissected from the stalk or from detached cap ray chambers of Acetabularia were used as an experimental system to study the induction of cytoplasmic contractions and concurrent cytoskeletal changes in plant cells. Immunofluorescence microscopy revealed that the actin cytoskeleton quickly rearranges upon induction of contraction by forming bundles oriented circumferentially around the affected area, whereas microtubules were not detected. Contraction is blocked by cytochalasin D or N-ethylmaleimide but is unaffected by microtubule specific inhibitors. Contraction requires external Ca2+ at concentrations of 1 μM or more, but fails to occur below 0.1 μM. Higher concentrations of Ca2+ up to 10 mM have no adverse effect. Contraction is prevented in the presence of micromolar Ca2+ by either 1 mM of the calcium channel blocker LaCl3 or 10 μM of the calmodulin inhibitor fluphenazine. Calcium ionophore A 23187 (1 μM) does not perturb wound contraction per se but causes the entire cytoplasm of wounded or unwounded cells to contract slowly. These data suggest that a localized influx of calcium ions at the wound edge causes major rearrangements in the distribution of cytoskeletal actin prior to contraction in Acetabularia. An involvement of calmodulin in calcium signaling is proposed.  相似文献   

4.
Summary The ultrastructure of the cytoskeleton inNicotiana alata pollen tubes grownin vitro has been examined after rapid freeze fixation and freeze substitution (RF-FS). Whereas cytoplasmic microtubules (MTs) and especially microfilaments (MFs) are infrequently observed after conventional chemical fixation, they occur in all samples prepared by RF-FS. Cortical MTs are oriented parallel to the long axis of the pollen tube and usually appear evenly spaced around the circumference of the cell. They are always observed with other components in a structural complex that includes the following: 1. a system of MFs, in which individual elements are aligned along the sides of the MTs and crossbridged to them; 2. a system of cooriented tubular endoplasmic reticulum (ER) lying beneath the MTs, and 3. the plasma membrane (PM) to which the MTs appear to be extensively linked. The cortical cytoskeleton is thus structurally complex, and contains elements such as MFs and ER that must be considered together with the MTs in any attempt to elucidate cytoskeletal function. MTs are also observed within the vegetative cytoplasm either singly or in small groups. Observations reveal that some of these may be closely associated with the envelope of the vegetative nucleus. MTs of the generative cell, in contrast to those of the vegetative cytoplasm, occur tightly clustered in bundles and show extensive cross-bridging. These bundles, especially in the distal tail of the generative cell, are markedly undulated. MFs are observed commonly in the cytoplasm of the vegetative cell. They occur in bundles oriented predominantly parallel to the pollen tube axis. Although proof is not provided, we suggest that they are composed of actin and are responsible for generating the vigorous cytoplasmic streaming characteristic of living pollen tubes.Abbreviations EGTA ethylene glycol bis-(-aminoethyl ether), N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - MF microfilament - MT microtubule - PEG polyethylene glycol - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution  相似文献   

5.
Motomura  T. 《Protoplasma》1994,178(3-4):97-110
Summary Processes of fertilization and zygote development inFucus distichus were studied by indirect immunofluorescence microscopy using anti- tubulin antibody and electron microscopy. Just after plasmogamy, sperm aster formation occurs during migration of a sperm nucleus toward an egg nucleus at the center of cytoplasm. Only sparse microtubules (MTs) exist around the egg nucleus. The sperm aster can be observed till karyogamy, but afterwards vanishes. Accompanying sperm aster formation, cortical MTs which are reticulately arranged develop further in the zygotes. In 4 h-old zygotes, characteristic structures which are composed of fine granular masses and consist of intermixed dense and lighter staining areas appear around the nucleus. These structures cannot be detected with anti- tubulin immunofluorescence microscopy. The two centrioles derived from the sperm separate and migrate to both poles. In 4 h-and 8 h-old zygotes, there are no defined MT foci around the zygote nucleus and MTs radiate from the circumference of it. In 12 h-old zygotes, each centriole has migrated to the poles and derivative centrioles are generated. The fine granular masses also migrate to both poles and finally disappear accompanying the appearance of numerous MTs radiating from the poles. Therefore, two distinct MT foci appear from 12 h onwards. Progressive stages of nuclear division were also examined with electron and immunofluorescence microscopy in 16 h-old zygotes. The sperm chloroplast with an eyespot and the sperm mitochondria with an intercristal tubular structure, which are distinctive from those of egg, can be detected after plasmogamy and karyogamy. The sperm chloroplast is still present in 16 h-old zygotes.  相似文献   

6.
Mark D. Lazzaro 《Protoplasma》1998,201(3-4):194-201
Summary In conifer pollen, the generative cell divides into a sterile stalk cell and a body cell, which subsequently divides to produce two sperm. InPicea abies (Norway spruce, Pinaceae) this spermatogenous body cell contains actin microfilaments. Microfilament bundles follow the spherical contour of the body cell within the cell cortex, and also traverse the cytoplasm and enmesh amyloplasts and other organelles. In addition, microfilaments are associated with the surface of the body cell nucleus. The sterile stalk cell also contains microfilament bundles in the cytoplasm, around organelles, and along the nuclear surface. Within the pollen grain, microfilament bundles traverse the vegetative-cell cytoplasm and are enriched in a webbed cage which surrounds the body cell. Microfilaments were identified with rhodamine-phalloidin and with indirect immunofluo-rescence using a monoclonal antibody to actin. The majority of evidence in literature suggests that the spermatogenous generative cell in angiosperms does not contain actin microfilaments, so the presence of microfilaments within the spermatogenous body cell inP. abies appears to be a fundamental difference in sexual reproduction between conifers and angiosperms.  相似文献   

7.
Actin and tubulins of Phytophthora infestans germlings were detected with monoclonal antibodies on Western blots of crude extracts separated by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Mr of actin was approximately 43,000, whereas alpha- and beta-tubulin, which migrated as a single band, had an Mr of 53,000. Rhodamine-phalloin revealed peripheral patches of actin in ungerminated cysts. In young germlings, actin fibers were visible in the conversion zone between cyst and germ tube and as connections between actin patches and the incipient germ tube. Actin patches also occurred throughout the peripheral cytoplasm of longer germ tubes, except for the hyphal apex, which commonly contained actin fibers, but actin patches only exceptionally. Associations between patches and fibers were frequent. A monoclonal antibody specific for actin also stained fibers, but in addition it revealed diffuse staining of the apex and fine granular structures, indicative of the presence of G-actin or of single actin filaments. Cysts incubated with a monoclonal antibody against tubulin contained an array of cytoplasmic microtubules (MTs) that arise from a nucleus-associated center. Some of these MTs circumflexed the nucleus, whereas others extended to the cyst periphery. In germ tubes, axially oriented MT bundles extended from the nucleus-associated center into the proximal and distal cytoplasm. Their density was highest near the nucleus, and their number decreased towards the tip, with only a few remaining at the extreme apex. Bundles of MTs were continuous from the nucleus to the subapical region, reaching lengths of up to 20 microns. Ultrastructurally the bundles consisted of as many as 10 MTs. The architecture of the actin and tubulin cytoskeletons in germ tubes of P. infestans bolsters the hypothesis that they maintain the spatial organization of the hyphal protoplast and support or accomplish intrahyphal movements.  相似文献   

8.
Summary Electron microscopy of nuclear division in young cysts ofAcetabularia wettsteinii shows that the dividing nucleus hat two additional cisternae of endoplasmic reticulum immediately outside the nuclear envelope. These additional cisternae are attached to, and apparently formed from a membrane body which develops outside the nucleus in early prophase. The interphase nucleus does not have the additional cisternae. The nucleoli are extruded from the nucleus at anaphase, the nucleolar bodies remaining in the peri-nuclear cytoplasm. The chromosomes have localized centromeres; the stratified ultrastructure characteristic of some chlorophycean and animal kinetochores has not been found inAcetabularia, although the kinetochore appears distinct, projecting from the chromatid, and has attached microtubules. The condensed bodies of the white spot nucleus are discussed.  相似文献   

9.
Polarity of Acetabularia mediterranea: Stability in the Anucleate State   总被引:1,自引:0,他引:1  
LUTTKE  ANGELA 《Annals of botany》1983,52(6):905-913
Concomitant with the outgrowth of the cap in cells of Acetabulariamediterranea Lamouroux, the stalk acquires a pale green appearance(‘Aufhellung’) and the chlorophyll and protein contentdecreases due to the translocation of part of the cytoplasmfrom the stalk into the cap. This process also occurs in anucleatecells or apical fragments during cap formation and in inversegrafts constructed either from two anucleate cells or apicalfragments or from two basal fragments containing the rhizoids.The cytoplasm's translocation does not depend on the presenceof the nucleus. It is suggested that the unidirectional flowof the cytoplasm during cap formation is generated by the electricalcharge across the cell and that this electrical charge is maintainedafter removal of the nucleus. Acetabularia, polarity, anucleate cells, grafts  相似文献   

10.
Summary Changes in F-actin organization following mechanical isolation ofZinnia mesophyll cells were documented by rhodamine-phalloidin staining. Immediately after isolation, most cells contained irregular cortical actin fragments of varying lengths, and less than 5% of cells contained intact cortical filaments. During the first 8 h of culture, filament fragments were replaced by actin rings, stellate actin aggregates, and bundled filament fragments. Some of these aggregates had no association with organelles (free actin aggregates). Other aggregates were associated with chloroplasts, which changed in shape and location at the same time actin aggregates appeared. F-actin was concentrated within or around the nucleus in a small percentage of cells. After 12 h in culture, the percentage of cells with free actin rings and chloroplast-associated actin aggregates began to decline and the percentage of cells having intact cortical actin filaments increased greatly. Intermediate images were recorded that strongly indicate that free actin rings, chloroplast-associated actin rings, and other actin aggregates self-assemble by successive bundling of actin filament fragments. The fragmentation and bundling of F-actin observed in mechanically isolatedZinnia cells resembles changes in F-actin distribution reported after diverse forms of cell disturbance and appears to be an example of a generalized response of the actin cytoskeleton to cell stress.Abbreviations FITC fluorescein isothiocyanate - MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - RhPh tetramethylrhodamine isothiocyanate-phalloidin  相似文献   

11.
Microtubule cytoskeleton in intact and wounded coenocytic green algae   总被引:2,自引:0,他引:2  
J. W. La Claire II 《Planta》1987,171(1):30-42
Microtubule (MT) arrangements were investigated, with immunofluorescence and electron microscopy, in two related species of coenocytic green algae. Intact cells of both Ernodesmis verticillata (Kützing) Boergesen and Boergesenia forbesii (Harvey) Feldmann have two morphologically distinct populations of MTs: a highly regular cortical array consisting of a single layer of parallel, longitudinal MTs; and perinuclear MTs radiating from the surface of the envelope of each interphase nucleus. In both algae, mitotic figures lack perinuclear MTs around them. Pre-incubation with taxol does not alter the appearance of these arrays. The cortical and nuclear MTs appear to coexist throughout the nuclear cycle, unlike the condition in most plant cells. At the cut/contracting ends of wounded Ernodesmis cells, cortical MTs exhibit bundling and marked convolution, with some curvature and slight bundling of MTs throughout the cell cortices. In Boergesenia, wound-induced reticulation and separation of the protoplasm into numerous spheres also involves a fasciation of MTs within the attenuating regions of the cytoplasm. Although some cortical MTs are fairly resistant to cold and amiprophos-methyl-induced depolymerization, the perinuclear ones are very labile, depolymerizing in 5–10 min in the cold. The MT cytoskeleton is not believed to be directly involved in wound-induced motility in these plants because amiprophos-methyl and cold depolymerize most cortical MTs without inhibiting motility. Also, the identical MT distributions in intact cells of these two algae belie the very different patterns of cytoplasmic motility. Although certain roles of the MT arrays may be ruled out, their exact functions in these plants are not known.Abbreviations APM amiprophos-methyl - DIC differential interference contrast - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MT(s) microtubule(s) - PBS phosphate-buffered saline  相似文献   

12.
T. Hogetsu  Y. Oshima 《Planta》1985,166(2):169-175
The microtubule (MT) arrangement in Closterium acerosum cells was observed by indirect immunofluorescence microscopy both during and following cell division, and during cell expansion without cell division. (During the division period, some cells of this alga divide whereas other cells expand in their middle region without division.) Before septum formation, all cells had a ring-like MT bundle (MT ring) in their middle. Both septum formation and expansion without cell division occurred at the position of this ring. During the periods of division, short, hair-like MTs appeared around the nucleus in some of the cells, in addition to the MT ring. In dividing cells, spindle MTs appeared as the chromosomes were condensed. During the early stages of expansion of the semicells, after cell division, the spindle MTs assumed a radial arrangement, moved, and settled in a position between the daughter chloroplasts. These MTs disappeared about 1.5 h after septum formation. As the new semicells were growing, wall MTs appeared, arranged transversely along the expanding wall. These transverse MTs disappeared gradually 4–5 h after septum formation, and only an MT ring remained near the boundary between the new and old semicells. The MT ring was present until the next cell division or expansion without cell division. During the latter course of development, transverse wall MTs were present only at the band-like expanding region. At the earlier stage of expansion without cell division, the short, hair-like MTs remained around the nucleus, but as time passed, both the hair-like MTs and, somewhat later, the transverse ones disappeared and only the MT rings remained. The remaining MT ring was not always positioned at the boundary between the expanding and the old cell region. The temporal relationships between the changes in MT arrangement, and the orientation and localization of cellulose-microfibril deposition are discussed.Abbreviations DAPI 46-diamino-2-phenylindole - EGTA ethyleneglycol-bis-(-aminoethylether)-N, N, N, N-tetraacetic acid - MT mierotubule - PMSF phenylmethylsulfonyl fruoride  相似文献   

13.
H. U. Koop 《Protoplasma》1981,109(1-2):143-157
Summary A compilation of characteristics of the two different systems of intracellular transport inAcetabularia (Koop andKiermayer 1980 a and b) is given.The presence of microfilaments-presumably F-actin-in the cytoplasm ofAcetabularia is demonstrated by electron microscopy.The evidence for an involvement of microtubules in streaming is strengthened by the induction of birefringent vinblastine crystals in the stalk of vegetative cells.Isolated portions of cytoplasm formin vitro more than 100 m long filopodium-like processes, which are highly birefringent. The processes show intensive immunofluorescent staining with both, anti-actin and anti-tubulin as a primary antibody.A perfusion buffer is presented, which after replacing the vacuolar sap does not lead to a change in cytoplasmic morphology or streaming pattern and velocities.  相似文献   

14.
Günther Werz 《Protoplasma》1968,65(3):349-357
Zusammenfassung Die vorliegende Arbeit beschreibt die Isolierung kernhaltigen und kernfreien Cytoplasmas aus den Hutkammern vonAcetabularia und dessen morphogenetisches Verhalten unterin vitro-Bedingungen.Kernhaltiges Cytoplasma (Protoplasten) bildet stets Cysten und cystenspezifische Zellwand.Die Fähigkeit kernlosen Cytoplasmas (Cytoplasten) zur Differenzierung und zur Synthese von Cystenwand hängt von der Einwirkungszeit des Kernes vor der Isolierung ab. Daher zeigen Cytoplasten aus Hutkammern, die keine Kerne enthielten, weder Differenzierung noch Bildung von Cystenwand. Differenzierung und Bildung von Cystenwand findet in gewissem Ausmaß dann statt, wenn Cytoplasten aus Hutkammern isoliert werden, in denen das Cytoplasma unter Kerneinfluß einen höheren Grad der Differenzierung erreicht hatte.
Differentiation and cell wall formation in isolated cytoplasm ofAcetabularia
Summary The present paper reports on the isolation of nucleate and anucleate cytoplasm of cap rays ofAcetabularia and with its morphogenetic behaviour underin vitro conditions.The nucleate cytoplasm (protoplasts) always differentiates cysts and cyst specific cell wall.The ability of anucleate cytoplasm (cytoplasts) to differentiate and to synthesize cyst wall depends on the time of nuclear actions prior to its isolation. Therefore, cytoplasts of cap rays which did not contain nuclei, show neither differentiation nor cyst wall formation. A certain degree of differentiation and of cyst wall formation takes place if cytoplasts are isolated from cap rays in which the cytoplasm had obtained a higher degree of differentiation eunder nuclear actions.


Fräulein R.Sandfuchs danke ich für die Aufzucht der Versuchspflanzen, Herrnstud. rer. nat. K.Ertl für seine Hilfe bei der Durchführung der Experimente.  相似文献   

15.
I. Mine  K. Okuda  D. Menzel 《Protoplasma》2001,216(1-2):56-65
Summary In the juvenile stage, the diploid giant-celled green algae Acetabularia spp. are differentiated into an upright stalk and an irregularly branched rhizoid. Early amputation and grafting experiments as well as biochemical and molecular analyses have shown that mRNA (as poly(A)+ RNA) is continuously supplied from the primary nucleus in the rhizoid and accumulates in the stalk apex. In the present study, localization of poly(A)+ RNA in the juvenile stage of theAcetabularia peniculus was investigated by fluorescent in situ hybridization using oligo(dT) as a probe. The signal was localized in the apical cytoplasm and, in addition, multiple longitudinal striations throughout the stalk and rhizoid cytoplasm. A large portion of the poly(A)+ RNA striations exhibited structural polarity, broadened at one end and gradually thinned toward the other end. Some of the striations in the rhizoid cytoplasm were continuous with a zone of signal in the area of the perinuclear rim. The poly(A)+ RNA striations were associated with thick bands of longitudinal actin bundles which run through the entire length of the stalk. Cytochalasin D caused fragmentation of the actin bundles and irregular distribution of the fluorescent signal. We suggest that the poly(A)+ RNA striations constitute a hitherto unknown form of packaged mRNA that is transported over large distances along the actin cytoskeleton to be stored and expressed in the growing apex.  相似文献   

16.
Summary In view of the importance of the lily pollen tube as an experimental model and the improvements in ultrastructural detail that can now be attained by the use of rapid freeze fixation and freeze substitution (RF-FS), we have reexamined the ultrastructure of these cells in material prepared by RF-FS. Several previously unreported details have been revealed: (1) the cytoplasm is organized into axial slow and fast lanes, each with a distinct structure; (2) long, straight microtubule (MT) and microfilament (MF) bundles occur in the cytoplasm of the fast lanes and are coaligned with every organelle present; (3) the cortical cytoplasm contains complexes of coaligned MTs, MFs, and endoplasmic reticulum (ER); (4) the cortical ER is arranged in a tight hexagonal pattern and individual elements are closely appressed to the plasma membrane with no space between; (5) mitochondria and ER extend into the extreme apex along the flanks of the pollen tube, and vesicles and ER are packed into an inverted cone-shaped area at the center of the apex; (6) MF bundles in the tip region are fewer, finer, and in random orientation in comparison to those of the fast lanes; (7) the generative cell (GC) cell wall complex contains patches of plasmodesmata; (8) The GC cytoplasm contains groups of spiny vesicles that are closely associated with and seem to be fusing with or pinching off from mitochondria, and (9) the vegetative nucleus (VN) contains internal MT-like structures as well as numerous cytoplasmic MTs associated with its membrane and also located between the VN and GC.Abbrevations CF chemical fixation - ER endoplasmic reticulum - GC generative cell - MF microfilament - MT microtubule - PD plasmodesmata - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution - VN vegetative nucleus  相似文献   

17.
The effects of exogenous abscisic acid (ABA), low temperature, and seedling age on the content of tubulin, actin, and phosphorylated proteins and the structural organization of microtubules (MTs) in cells of different tissues and organs of winter wheat cultivars contrasting in cold hardiness were studied by immunocytochemical methods using monoclonal (against - and -tubulin and actin) and polyclonal (phosphothreonine) antibodies. The leaves and roots of five- and nine- day-old seedlings of three cultivars were characterized by unequal proportion of actin/tubulin proteins. ABA decreased the content of the cytoskeleton and the 60-kD phosphorylated proteins, thus promoting a decrease in the number of MTs and occurrence of a less branched network of weakly fluorescent tubulin components in the cells of the root differentiating zone (which is most responsible for the development of cold hardiness in wheat). Although the cold acclimation of plants (3°C, 7 days) did not change the level of tubulin and actin proteins, it evoked the spatial aggregation of MT, leading to formation of a dense network of tubulin cytoskeleton comprised of thick bundles of intensively fluorescent MTs. In the case of a combined action of the studied factors, low temperatures abolished the hormone effect described above, evoking an increase in the content of the cytoskeletal and 60-kD phosphorylated proteins and MT structures. We suggest that the ABA-induced decrease in the levels of proteins and MTs occurs at the initial stages of plant cold acclimation (3°C, 2-3 days). It may be the signal that triggers the processes of low-temperature adaptation. As the duration of cold acclimation increased (3°C, 7 days), the role of ABA in the formation of plant tolerance decreased. Apparently, in this case other hormone-independent mechanisms of frost hardiness development are triggered, in which the role of the cytoskeleton components and cytoskeleton-associated proteins increases.  相似文献   

18.
Summary. The morphology of conidiogenesis and associated changes in microtubules, actin distribution and ultrastructure were studied in the basidiomycetous yeast Fellomyces fuzhouensis by phase-contrast, fluorescence, and electron microscopy. The interphase cell showed a central nucleus with randomly distributed bundles of microtubules and actin, and actin patches in the cortex. The conidiogenous mother cell developed a slender projection, or stalk, that contained cytoplasmic microtubules and actin cables stretched parallel to the longitudinal axis and actin patches accumulated in the tip. The conidium was produced on this stalk. It contained dispersed cytoplasmic microtubules, actin cables, and patches concentrated in the cortex. Before mitosis, the nucleus migrated through the stalk into the conidium and cytoplasmic microtubules were replaced by a spindle. Mitosis started in the conidium, and one daughter nucleus then returned to the mother via an eccentrically elongated spindle. The cytoplasmic microtubules reappeared after mitosis. A strong fluorescence indicating accumulated actin appeared at the base of the conidium, where the cytoplasm cleaved eccentrically. Actin patches then moved from the stalk together with the retracting cytoplasm to the mother and conidium. No septum was detected in the long neck by electron microscopy, only a small amount of fine “wall material” between the conidium and mother cell. Both cells developed a new wall layer, separating them from the empty neck. The mature conidium disconnected from the empty neck at the end-break, which remained on the mother as a tubular outgrowth. Asexual reproduction by conidiogenesis in the long-neck yeast F. fuzhouensis has unique features distinguishing it from known asexual forms of reproduction in the budding and fission yeasts. Fellomyces fuzhouensis develops a unique long and narrow neck during conidiogenesis, through which the nucleus must migrate into the conidium for eccentric mitosis. This is followed by eccentric cytokinesis. We found neither an actin cytokinetic ring nor a septum in the long neck, from which cytoplasm retracted back to mother cell after cytokinesis. Both the conidium and mother were separated from the empty neck by the development of a new lateral wall (initiated as a wall plug). The cytoskeleton is clearly involved in all these processes. Correspondence and reprints: Department of Biology, Faculty of Medicine, Masaryk University, Tomešova 12, 602 00 Brno, Czech Republic.  相似文献   

19.
Summary The effects of methyl benzimidazole-2-yl carbamate (MBC) on microtubule and actin cytoskeleton were analyzed by indirect immunofluorescence and transmission electron microscopy in a wild-type strain and a benomyl-resistant mutant (benA 10) ofAspergillus nidulans. The treatment of the wild-type strain with sublethal doses of MBC not only caused depolymerization of cytoplasmic microtubules (MTs), but also changed the pattern of actin at the hyphal tips. In the MBC-treated hyphae, the actin fluorescence was concentrated at the very tip region of the hypha, whereas in the control hyphae, the actin fluorescence was weak at the very tip and strong below the tip. The dose of MBC used for the wild-type strain did not depolymerize the MTs or modify the actin organization at the apex in the mutant strain, which confirmed that the change in actin distribution in the wild-type strain was due to the disruption of MTs. In the mutant strain, a seven times higher concentration of MBC than in the wild-type strain was required to depolymerize MTs and to alter the actin organization at the apex. The ultrastructural study of the MBC-treated hyphae revealed that the area containing apical vesicles was larger and the number of microvesicles was higher than in control hyphae. These changes probably resulted from the disassembly of MTs and the reorientation of actin cytoskeleton in MBC-treated apexes and suggested that MTs would organize the actin at the apex, which in turn would restrict the vesicle fusion to a narrow area at the hyphal tip. In treated hyphae of both strains without cytoplasmic MTs, mitotic spindles were detected although in lower number and with slightly modified morphology.Abbreviations DAPI 4,6-diamidino-2-phenylindole - DMSO dimethyl sulfoxide - EM electron microscopy - ER endoplasmic reticulum - IIP indirect immunofluorescence - MBC methyl benzimidazole-2-yl carbamate - MTs microtubules  相似文献   

20.
We address the relative roles of astral and central spindle microtubules (MTs) in cytokinesis of Drosophila melanogaster primary spermatocytes. Time-lapse imaging studies reveal that the central spindle is comprised of two MT populations, "interior" central spindle MTs found within the spindle envelope and "peripheral" astral MTs that probe the cytoplasm and initiate cleavage furrows where they contact the cortex and form overlapping bundles. The MT-associated protein Orbit/Mast/CLASP concentrates on interior rather than peripheral central spindle MTs. Interior MTs are preferentially affected in hypomorphic orbit mutants, and consequently the interior central spindle fails to form or is unstable. In contrast, peripheral MTs still probe the cortex and form regions of overlap that recruit the Pav-KLP motor and Aurora B kinase. orbit mutants have disorganized or incomplete anillin and actin rings, and although cleavage furrows initiate, they ultimately regress. Our work identifies a new function for Orbit/Mast/CLASP and identifies a novel MT population involved in cleavage furrow initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号