首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tian Y  Jia Z  Wang J  Huang Z  Tang J  Zheng Y  Tang Y  Wang Q  Tian Z  Yang D  Zhang Y  Fu X  Song J  Liu S  van Velkinburgh JC  Wu Y  Ni B 《PloS one》2011,6(11):e27770
Regulatory T cells (Treg) contribute to the crucial immunological processes of self-tolerance and immune homeostasis. Genomic mechanisms that regulate cell fate decisions leading to Treg or conventional T cells (Tconv) lineages and those underlying Treg function remain to be fully elucidated, especially at the histone modification level. We generated high-resolution genome-wide distribution maps of monomethylated histone H3 lysine 4 (H3K4me1) and trimethylated H3K4 (H3K4me3) in human CD4(+)CD25(+)FOXP3(+) Tregs and CD4(+)CD25(+)FOXP3(-) activated (a)Tconv cells by DNA sequencing-by-synthesis. 2115 H3K4me3 regions corresponded to proximal promoters; in Tregs, the genes associated with these regions included the master regulator FOXP3 and the chemokine (C-C motif) receptor 7 (CCR7). 41024 Treg-specific H3K4me1 regions were identified. The majority of the H3K4me1 regions differing between Treg and aTconv cells were located at promoter-distal sites, and in vitro reporter gene assays were used to evaluate and identify novel enhancer activity. We provide for the first time a comprehensive genome-wide dataset of lineage-specific H3K4me1 and H3K4me3 patterns in Treg and aTconv cells, which may control cell type-specific gene regulation. This basic principle is likely not restricted to the two closely-related T cell populations, but may apply generally to somatic cell lineages in adult organisms.  相似文献   

3.
正Histone methylation is a kind of important epigenetic modification which occurs on the lysine residue or arginine residue of histone tails(Zhang and Reinberg,2001).It takes part in multiple biological processes,including gene expression,genomic stability,stem cell maturity,genetic imprinting,mitosis and development(Fischle et al.,2005).Abnormal histone methylation pattern may  相似文献   

4.
Hyperglycemia/hyperinsulinemia are leading cause for the induction type 2 diabetes and the role of post-translational histone modifications in dysregulating the expression of genes has emerged as potential important contributor in the progression of disease. The paradoxical nature of histone H3-Lysine 4 and Lysine 9 mono-methylation (H3K4me1 and H3K9me1) in both gene activation and repression motivated us to elucidate the functional relationship of these histone modifications in regulating expression of genes under hyperglycaemic/hyperinsulinemic condition. Chromatin immunoprecipitation–microarray analysis (ChIP-chip) was performed with H3 acetylation, H3K4me1 and H3K9me1 antibody. CLUSTER analysis of ChIP-chip (Chromatin immunoprecipitation–microarray analysis) data showed that mRNA expression and H3 acetylation/H3K4me1 levels on genes were inversely correlated with H3K9me1 levels on the transcribed regions, after 30 min of insulin stimulation under hyperglycaemic condition. Interestingly, we provide first evidence regarding regulation of histone de/acetylases and de/methylases; Myst4, Jmjd2b, Aof1 and Set by H3Ac, H3K4me1 and H3K9me1 under hyperinsulinemic/hyperglycaemic condition. ChIP–qPCR analysis shows association of increased H3Ac/H3K4me1 and decreased levels of H3K9me1 in up regulation of Myst4, Jmjd2, Set and Aof1 genes. We further analyse promoter occupancy of histone modifications by ChIP walking and observed increased occupancy of H3Ac/H3K4me1 on promoter region (−1000 to −1) of active genes and H3K9me1 on inactive genes under hyperglycemic/hyperinsulinemic condition. To best of our knowledge this is the first report that shows regulation of chromatin remodelling genes by alteration in the occupancy of histone H3Ac/H3K4/K9me on both promoter and transcribed regions.  相似文献   

5.
《Molecular cell》2014,53(1):49-62
  1. Download : Download high-res image (295KB)
  2. Download : Download full-size image
  相似文献   

6.
The epigenetic marks H3K27me3 and H3K4me3 are important repressive and permissive histone modifications, respectively, which are involved in gene regulation such as Hox gene expression during embryonic development. In this study, we investigated the global levels of these two histone modifications. We also investigated the expression of H3K27me3's methyltransferase (EZH2), EZH2 co‐factors (EED and SUZ12) and demethylases (JMJD3 and UTX), as well as H3K4me3's methylases (ASH1L and MLL1) and demethylase (RBP2) in porcine pre‐implantation embryos. In addition, the expression of Hox genes, HOXA2, HOXA3, HOXA7, HOXA10, HOXB4, HOXB7, HOXC8, HOXD8, and HOXD10 was investigated. We found that global levels of H3K27me3 decreased from the 1‐ to the 4‐cell stage, corresponding to the time of major embryonic genome activation. Subsequently, the levels increased in hatched blastocysts, particularly in the trophectoderm. The expression levels of EZH2, EED, SUZ12, JMJD3, and UTX correlated well with these findings. The global levels of H3K4me3 decreased from the 1‐cell to the morula stage and increased in hatched blastocysts, especially in trophectoderm. A peak in expression of ASH1L was seen at the 4‐cell stage, but overall, expression of ASH1L, MLL1, and RBP2 correlated poorly with H3K4me3. HOXA3, A7, and B4 were expressed in 4‐cell embryos, and HOXA7, A10, B4, and D8 were expressed in hatched blastocysts, and did not correlate well to global methylation of H3K27me3 or H3K4me3. Thus, H3K4me3 may play a role in early porcine embryonic genome activation, whereas, H3K27me3 may be involved in initial cell lineage segregation in the blastocyst. Mol. Reprod. Dev. 77: 540–549, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.  相似文献   

10.
11.
Zhu  Qian  Chen  Jiayi  Lu  Xiaopeng  Wen  He  Zhu  Wei-Guo 《中国科学:生命科学英文版》2022,65(5):1043-1045
Science China Life Sciences -  相似文献   

12.
Histone methylation is a prominent feature of eukaryotic chromatin that modulates multiple aspects of chromosome function. Methyl modification can occur on several different amino acid residues and in distinct mono-, di-, and tri-methyl states. However, the interplay among these distinct modification states is not well understood. Here we investigate the relationships between dimethyl and trimethyl modifications on lysine 9 of histone H3 (H3K9me2 and H3K9me3) in the adult Caenorhabditis elegans germ line. Simultaneous immunofluorescence reveals very different temporal/spatial localization patterns for H3K9me2 and H3K9me3. While H3K9me2 is enriched on unpaired sex chromosomes and undergoes dynamic changes as germ cells progress through meiotic prophase, we demonstrate here that H3K9me3 is not enriched on unpaired sex chromosomes and localizes to all chromosomes in all germ cells in adult hermaphrodites and until the primary spermatocyte stage in males. Moreover, high-copy transgene arrays carrying somatic-cell specific promoters are highly enriched for H3K9me3 (but not H3K9me2) and correlate with DAPI-faint chromatin domains. We further demonstrate that the H3K9me2 and H3K9me3 marks are acquired independently. MET-2, a member of the SETDB histone methyltransferase (HMTase) family, is required for all detectable germline H3K9me2 but is dispensable for H3K9me3 in adult germ cells. Conversely, we show that the HMTase MES-2, an E(z) homolog responsible for H3K27 methylation in adult germ cells, is required for much of the germline H3K9me3 but is dispensable for H3K9me2. Phenotypic analysis of met-2 mutants indicates that MET-2 is nonessential for fertility but inhibits ectopic germ cell proliferation and contributes to the fidelity of chromosome inheritance. Our demonstration of the differential localization and independent acquisition of H3K9me2 and H3K9me3 implies that the trimethyl modification of H3K9 is not built upon the dimethyl modification in this context. Further, these and other data support a model in which these two modifications function independently in adult C. elegans germ cells.  相似文献   

13.
14.
15.
16.
17.
In Saccharomyces cerevisiae, all H3K4 methylation is performed by a single Set1 Complex (Set1C) that is composed of the catalytic (Set1) and seven other subunits (Swd1, Swd2, Swd3, Bre2, Sdc1, Spp1 and Shg1). It has been known for quite some time that trimethylated H3K4 (H3K4me3) is enriched in the vicinity of meiotic double-strand breaks (DSBs), but the link between H3K4me3 and the meiotic nuclease Spo11 was uncovered only recently. The PHD-containing subunit Spp1, by interacting with H3K4me3 and Mer2, was shown to promote the recruitment of potential meiotic DSB sites to the chromosomal axis allowing their subsequent cleavage by Spo11. Therefore, Spp1 emerged as a key regulator of the H3K4 trimethylation catalyzed by Set1C and of the formation of meiotic DSBs. These findings illustrate the remarkable multifunctionality of Spp1, which not only regulates the catalytic activity of the enzyme (Set1), but also interacts with the deposited mark, and mediates its biological effect (meiotic DSB formation) independently of the complex. As it was previously described for Swd2, and now for Spp1, we anticipate that other Set1C subunits, in addition to regulating H3K4 methylation, may participate in diverse biological functions inside or outside of the complex.  相似文献   

18.
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 Å-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-π contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignances, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号