首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Kaldenhoff R  Iino M 《Plant physiology》1997,114(4):1267-1272
The literature indicates that the tip of maize (Zea mays L.) coleoptiles has the localized functions of producing auxin for growth and perceiving unilateral light stimuli and translocating auxin laterally for phototropism. There is evidence that the auxinproducing function of the tip is restored in decapitated coleoptiles. We examined whether the functions for phototropism are also restored by using blue-light conditions that induced a first pulse-induced positive phototropism (fPIPP) and a time-dependent phototropism (TDP). When the apical 5 mm, in which photosensing predominantly takes place, was removed, no detectable fPIPP occurred even if indole-3-acetic acid (lanolin mixture) was applied to the cut end. However, when the blue-light stimulation was delayed after decapitation, fPIPP became inducible in the coleoptile stumps supplied with indole-3-acetic-acid/lanolin (0.01 mg g-1), indicating that phototropic responsiveness was restored. This restoration progressed 1 to 2 h after decapitation, and the curvature response became comparable to that of intact coleoptiles. The results for TDP were qualitatively similar, but some quantitative differences were observed. It appeared that the overall TDP was based on a major photosensing mechanism specific to the tip and on at least one additional mechanism not specific to the tip, and that the tip-specific TDP was restored in decapitated coleoptiles with kinetics similar to that for fPIPP. It is suggested that the photoreceptor system, which accounts for fPIPP and a substantial part of TDP, is regenerated in decapitated coleoptiles, perhaps together with the mechanism for lateral auxin translocation.  相似文献   

2.
The development of the geoelectric effect has been followedin Zea coleoptiles with a flowing-solution electrode system,and its dependence upon auxin concentration gradients and aerobicmetabolism assessed. A symmetrical source of IAA can effectively replace the coleoptiletip in allowing the geo-electric potential to occur. The diffusatefrom coleoptile tips, when applied asymmetrically to the apexof a vertical decapitated coleoptile, generates a potentialdifference across the coleoptile indistinguishable from thatinduced by the asymmetrical application of IAA. Asymmetricalapplication of IAA to vertical Avena and Zea coleoptiles andHelianthus hypocotyls induces closely similar responses. Neither the geoelectric effect nor a geotropic response developswhen intact Zea coleoptiles are placed horizontally after beingdeprived of oxygen, but they both occur when an aerobic atmosphereis restored. The lateral potential difference induced by theasymmetrical application of IAA to the apex of a vertical coleoptiledoes not occur under anoxic conditions. With a static-drop electrode system and a decapitated Zea coleoptile,a potential difference develops immediately after reorientationof the coleoptile into the horizontal position, and attainsa maximum value after about 10 min. This potential differencecan be further increased by the asymmetrical application ofIAA to the lower half of the apical cut surface of the coleoptile. Our data support the view that both the geoelectric potentialand the geotropic response are due to the IAA concentrationgradient which arises from the lateral transport of this substancefrom the upper to the lower half of the horizontal shoot. Theyalso bear out our previous conclusions that the ‘geoelectricpotential’ observed with static-drop electrodes and anintact shoot, is the resultant of two processes. The first isa physical phenomenon arising in the electrodes, or betweenthe electrodes and the plant tissue, and the second arises inthe living tissues of the shoot as the result of gravity-inducedchanges in auxin distribution.  相似文献   

3.
Haga K  Takano M  Neumann R  Iino M 《The Plant cell》2005,17(1):103-115
We isolated a mutant, named coleoptile phototropism1 (cpt1), from gamma-ray-mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution.  相似文献   

4.
Parker KE  Briggs WR 《Plant physiology》1990,94(4):1763-1769
We have investigated the transport of tritiated indole-3-acetic acid (IAA) in intact, red light-grown maize (Zea mays) coleoptiles during gravitropic induction and the subsequent development of curvature. This auxin is transported down the length of gravistimulated coleoptiles at a rate comparable to that in normal, upright plants. Transport is initially symmetrical across the coleoptile, but between 30 and 40 minutes after plants are turned horizontal a lateral redistribution of the IAA already present in the transport stream occurs. By 60 minutes after the beginning of the gravitropic stimulus, the ratio of tritiated tracer auxin in the lower half with respect to the upper half is approximately 2:1. The redistribution of growth that causes gravitropic curvature follows the IAA redistribution by 5 or 10 minutes at the minimum in most regions of the coleoptile. Immobilization of tracer auxin from the transport stream during gravitropism was not detectable in the most apical 10 millimeters. Previous reports have shown that in intact, red light-grown maize coleoptiles, endogenous auxin is limiting for growth, the tissue is linearly responsive to linearly increasing concentrations of small amounts of added auxin, and the lag time for the stimulation of straight growth by added IAA is approximately 8 or 9 minutes (TI Baskin, M Iino, PB Green, WR Briggs [1985] Plant Cell Environ 8: 595-603; TI Baskin, WR Briggs, M Iino [1986] Plant Physiol 81: 306-309). We conclude that redistribution of IAA in the transport stream occurs in maize coleoptiles during gravitropism, and is sufficient in degree and timing to be the immediate cause of gravitropic curvature.  相似文献   

5.
Elongation growth of intact, red-light grown maize (Zea mays L.) coleoptiles was studied by applying a small spot of an indole acetic acid (IAA)-lanolin mixture to the coleoptile tip. We report that: (a) endogenous auxin is limiting for growth, (b) an approximately linear relation holds between auxin concentration and growth rate over a range which spans those rates occurring in phototropism, and (c) an auxin gradient established at the coleoptile tip is well sustained during its basipetal transport. We argue that the growth differential underlying coleoptile phototropism (first-positive curvature) can be explained by redistribution of auxin at the coleoptile tip.  相似文献   

6.
Incubation of Zea coleoptiles in 0.5 M mannitol totally inhibitsgrowth and geotropic curvature, but does not affect the developmentof the geoelectric effect. This pre-treatment also inhibitsthe curvature induced by the asymmetrical application of IAAto the apical end of decapitated vertical coleoptiles, but itdoes not prevent the IAA from giving rise to an electropotentialdifference between the two sides of the coleoptile. Neitherthe normal geoelectric effect, nor the auxin-induced potentialdifference in vertical coleoptiles, can therefore arise as theresult of the different rates of cell extension in the two halvesof the organ. They must be the result of the change of IAA concentrationaffecting some other aspect of the cell's physiology or metabolism. The abolition of the electrical responses in coleoptiles whichhave been plasmolysed in 1.0 M mannitol strongly suggests thatboth longitudinal and lateral transport of IAA are severelydepressed by this degree of plasmolysis. Asymmetrical application of 10-5 M mersalyl and several othersubstances to the apical end of a decapitated vertical coleoptilegave rise to a marked electropotential difference between thetwo sides of the coleoptile, the side beneath the donor beingpositively charged with respect to the other side. Mersalyldoes not promote the growth of Zea coleoptiles. These resultsprovide additional evidence that the electropotentials do notarise from differential growth, and suggest that such substances,especially the diuretics used in clinical medicine, may provideuseful tools in the further study of the induction of surfaceelectropotentials in plant tissues at the cellular level.  相似文献   

7.
Distribution of endogenous diffusible auxin into agar blocks from phototropically stimulated maize coleoptile tips was studied using a bioassay and a physicochemical assay, to clarify whether phototropism in maize coleoptiles involves a lateral gradient in the amount of auxin. At 50 min after the onset of phototropic stimulation, when the phototropic response was still developing, direct assay of the blocks with the Avena curvature test showed that the auxin activity in the blocks from the shaded half-tips was twice that of the lighted side, at both the first and second positive phototropic curvatures. However, physicochemical determination following purification showed that the amount of indole-3-acetic acid (IAA) was evenly distributed in the blocks from lighted and shaded coleoptile half-tips at both the first and second positive phototropic curvatures. The even distribution of the IAA was also confirmed with the Avena curvature test following purification by HPLC. These results indicate that phototropism in maize coleoptiles is not caused by a lateral gradient of IAA itself and thus cannot be described by the Cholodny-Went theory. Furthermore, the lower auxin activity in the blocks from the lighted half-tips suggests the presence of inhibitor(s) interfering with the action of auxin and their significant diffusion from unilaterally illuminated coleoptile tips.  相似文献   

8.
Elongation of coleoptile segments, having or not having a tip,excised from rice (Oryza sativa L. cv. Sasanishiki) seedlingswas promoted by exogenous ethylene above 0.3 µl l–1as well as by IAA above 0.1 µM. Ethylene production ofdecapitated segments was stimulated by IAA above 1.0µM,and this was strongly inhibited by 1.0 µM AVG. AVG inhibitedthe IAA-stimulated elongation of the decapitated segment witha 4 h lag period, and this was completely recovered by ethyleneapplied at the concentration of 0.03 µl l–1, whichhad no effect on elongation without exogenous IAA. The effectsof IAA and ethylene on elongation were additive. These factsshow that ethylene produced in response to IAA promotes ricecoleoptile elongation in concert with IAA, probably by prolongingthe possible duration of the IAA-stimulated elongation, butthat they act independently of each other. Moreover, AVG stronglyinhibited the endogenous growth of coleoptile segments withtips and this effect was nullified by the exogenous applicationof 0.03 µl l–1 ethylene. These data imply that theelongation of intact rice coleoptiles may be regulated cooperativelyby endogenous ethylene and auxin in the same manner as foundin the IAA-stimulated elongation of the decapitated coleoptilesegments. Key words: oryza sativa, Ethylene, Auxin, Coleoptile growth  相似文献   

9.
玉米胚芽鞘向光性运动的一些特性   总被引:3,自引:1,他引:2  
利用云母片分隔、HPLC分析等方法研究了玉米胚芽鞘向光性运动的特性。云母片阻隔生长素的移动后并不能阻止胚芽鞘的向光性变弯曲。  相似文献   

10.
Coleoptiles of Avena possessed the capacity to degrade infiltrated indole-3-acetic acid (IAA). This activity decreased along the length of the coleoptile from apex to base on the bases of fresh weight, dry weight and protein; the apical 1 cm segment degraded more IAA than segments from other parts of the coleoptile. The naturally occurring inhibitor of the IAA oxidase activity increased in concentration up to 20 mm from the coleoptile apex; beyond, it decreased gradually towards the base. The spatial distribution of this inhibitor does not explain the gradient in IAA oxidase activity. Growth in length of the coleoptile and the IAA inactivating capacity of the apical 1 cm segment, increased 5- and 4,4-fold, respectively, between the ages of 70 and 130 h; but auxin secretion into agar platelets by the apical 2 mm of the coleoptile registered only a 2.7-fold increase. Deseeding and derooting the seedlings reduced the subsequent growth, diffusible auxin content and the IAA oxidase activity of the coleoptiles; derooting proved to be more deleterious than deseeding. A parallel reduction was evident in auxin content and IAA degrading activity following these treatments. Application of the cytokinin 6-benzylaminopurine (BAP) to coleoptiles of derooted seedlings failed to influence their capacity to degrade IAA. Nor was the activity of the aldehyde oxidase, which converts indole-3-acetaldehyde (IAAld) to IAA, affected by such treatment.  相似文献   

11.
Gravitropism is explained by the Cholodny–Went hypothesis: the basipetal flow of auxin is diverted laterally. The resulting lateral auxin gradient triggers asymmetric growth. However, the Cholodny–Went hypothesis has been questioned repeatedly because the internal auxin gradient is too small to account for the observed growth asymmetry. Therefore, an additional gradient in indolyl-3-acetic acid (IAA) sensitivity has been suggested (Brauner and Hager in Planta 51:115–147, 1958). We challenged the Cholodny–Went hypothesis for gravitropism of rice coleoptiles (Oryza sativa L.) and found it to be essentially true. However, we observed, additionally, that the two halves of gravitropically stimulated coleoptiles responded differentially to the same amount of exogenous auxin: the auxin response is reduced in the upper flank but normal in the lower flank. This indicates that the auxin-gradient is amplified by a gradient of auxin responsiveness. Hormone contents were measured across the coleoptile by a GC-MS/MS technique and a gradient of jasmonate was detected opposing the auxin gradient. Furthermore, the total content of jasmonate increased during the gravitropic response. Jasmonate gradient and increase persist even when the lateral IAA gradient is inhibited by 1-N-naphtylphtalamic acid. Flooding with jasmonate delays the onset of gravitropic bending. Moreover, a jasmonate-deficient rice mutant bends more slowly and later than the wild type. We discuss a role of jasmonate as modulator of auxin responsiveness in gravitropism.  相似文献   

12.
Sources of Free IAA in the Mesocotyl of Etiolated Maize Seedlings   总被引:7,自引:4,他引:3       下载免费PDF全文
Iino M  Carr DJ 《Plant physiology》1982,69(5):1109-1112
Sources of free indole-3-acetic acid (IAA) for the mesocotyl of intact etiolized maize ((Zea mays L.) seedlings are evaluated. The coleoptile unit, which includes the primary leaves and the coleoptilar node, is the main source of free IAA for the mesocotyl. The seed and the roots are not immediate sources of IAA supply. Dependence of the apical growing region of the mesocotyl on the coleoptile unit as a source of free IAA is almost total. One-half or more of the supply of IAA comes from the coleoptile tip, the rest mainly from the primary leaves. Removal of the coleoptile tip results in inhibition of mesocotyl elongation. The hypothesis that growth of the mesocotyl is regulated by auxin supplied by the coleoptile is supported. Conjugated forms of IAA appear to play little part in regulating the levels of free IAA in the shoot.  相似文献   

13.
Phototropic curvature results from differential growth on two sides of the elongating shoot, which is explained by asymmetrical indole-3-acetic acid (IAA) distribution. Using 2 cm maize coleoptile segments, 1st positive phototropic curvature was confirmed here after 8 s irradiation with unilateral blue light (0.33 μmol m(-2) s(-1)). IAA was redistributed asymmetrically by approximately 20 min after photo-stimulation. This asymmetric distribution was initiated in the top 0-3 mm region and was then transmitted to lower regions. Application of the IAA transport inhibitor, 1-N-naphthylphthalamic acid (NPA), to the top 2 mm region completely inhibited phototropic curvature, even when auxin was simultaneously applied below the NPA-treated zone. Thus, lateral IAA movement occurred only within the top 0-3 mm region after photo-stimulation. Localized irradiation experiments indicated that the photo-stimulus was perceived in the apical 2 mm region. The results suggest that this region harbours key components responsible for photo-sensing and lateral IAA transport. In the present study, it was found that the NPH3- and PGP-like genes were exclusively expressed in the 0-2 mm region of the tip, whereas PHOT1 and ZmPIN1a, b, and c were expressed relatively evenly along the coleoptile, and ZmAUX1, ZMK1, and ZmSAURE2 were strongly expressed in the elongation zone. These results suggest that the NPH3-like and PGP-like gene products have a key role in photo-signal transduction and regulation of the direction of auxin transport after blue light perception by phot1 at the very tip region of maize coleoptiles.  相似文献   

14.
Abstract: Gravity-induced events such as amyloplast sedimentation and lateral auxin transport were probed with cytoskeletal drugs in coleoptiles of rice ( Oryza sativa L.). Amyloplast sedimentation was retarded by taxol. Lateral transport of auxin (3H-indoleacetic acid) was strongly inhibited by EPC (ethyl N-phenylcarbamate), but only partially inhibited by taxol. 1 mM EPC reduced gravitropism while phototropism was not affected. The findings suggest that microtubules may transduce pressure or proximity of amyloplasts to the auxin exporter in the plasmalemma.  相似文献   

15.
Plasmodesmata, Tropisms, and Auxin Transport   总被引:4,自引:0,他引:4  
Attempts were made to disrupt the plasmodesmata between oatcoleoptile cells (Avena saliva L. cv. Victory) by severe plasmolysis.Coleoptiles, allowed to regain turgor after plasmolysis, wereable to execute geotropic and phototropic curvatures and segmentswould grow in response to applied auxin. In coleoptiles similarlytreated, studies with [14C]IAA have shown that longitudinal,basipetal transport of auxin still takes place and, as in controls,IAA is preferentially redistributed laterally within coleoptilesorientated horizontally. Physical continuity of the symplast of oat coleoptile cellsmay not always be disrupted by severe plasmolysis. Nevertheless,functional continuity appears to be interrupted. Despite this,all the processes involved in the execution of tropistic curvaturesremain intact, including transport of hormones. Plasmodesmatalcontinuity between oat coleoptile cells appears not to be anecessary requirement for auxin transport.  相似文献   

16.
The rates of elongation of the coleoptiles of Avena seedlings,subjected to intermittent immersion in solutions of IAA or 2:4-Dfor various total periods, were determined from measurementsof photographs taken every hour by infra-red radiation. Immersion in 17·5 mg./l. IAA for 1–5 hours causeda large increase in the growth rate followed by a depression.When the seedlings were immersed in 8·75 mg./l. IAA forperiods of 12 or 24 hours the depression was partially overcomeso long as the treatment was continued. Absorption of additionalIAA by the coleoptiles reduced their geotropic sensitivity. Penetration of 2:4-D (sodium salt) into the coleoptiles wasslower than that of IAA and the resulting stimulation of thegrowth rate was less, particularly in unbuffered solutions.After the treatment the growth rate declined slowly to aboutthe normal value. Results with coleoptiles were very similar to those previouslyobtained with rhizomes of Aegopodium and suggest that inhibitionof growth following stimulation by IAA may be of general occurrence.Possible causes of the inhibition are discussed and a comparisonis made between the results with intact coleoptiles and observationsmade by others on coleoptile sections. Temporary immersion of the seedlings in auxin solutions depressedthe rate of elongation of the primary leaf while it increasedthat of the coleoptile. It caused little disturbance of theendogenous rhythm induced by change from light to darkness.The suggestion that such rhythms can be explained in terms ofvariation in concentration of IAA-oxidase is not supported.  相似文献   

17.
Sites and regulation of auxin biosynthesis in Arabidopsis roots   总被引:1,自引:0,他引:1       下载免费PDF全文
Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.  相似文献   

18.
  • 1 In 4-day-old etiolated rice seedlings, 3 mm of the coleoptile tip did mainly perceive the photostimulus to cause the phytochrome-dependent inhibition of coleoptile elongation. At this age, cell elongation occurred most in the middle portion of coleoptiles in the dark, and was reversibly controlled by a brief exposure of the tip to red and far-red light. Thus, the photoperceptive site was evidently separated from the growing zone in intact rice coleoptiles.
  • 2 The red-light-induced inhibition of coleoptile elongation was nullified by the removal of tip followed by the exogenous application of IAA. The sensitivity of thus treated coleoptiles to IAA was gradually lost during intervening darkness between the irradiation and the decapitation, and a 50% loss was obtained at ca. 6th hour at 26°C.
  • 3 Polar auxin transport from coleoptile tips was remarkably prevented at the period between, at least, 2nd and 4th hour after red irradiation, and it recovered to the level of dark control by the 6th hour. Far-red light given immediately after red irradiation reversed the yield of diffusible auxin up to that of far-red control.
  相似文献   

19.
WHITE  J. C. 《Annals of botany》1976,40(3):521-529
In view of the variation in the ability of indol-3yl-aceticacid (IAA) to prevent lateral bud growth on decapitated plantsvarious factors which might influence the response have beeninvestigated in Phaseolus vulgaris L. The effectiveness of IAAapplied in lanolin varied from experiment to experiment. Factorsthat altered the response included the time of year, the concentrationand quantity of IAA, the age of the plant, the type of lanolinand the region of application. In many instances IAA, at a concentrationbelieved to mimic the auxin relations of the intact plant, cancompletely replace the main shoot with respect to the correlativeinhibition of lateral bud growth. The evidence for the involvementof IAA as the primary determinant in apical dominance in P.vulgaris is summarized.  相似文献   

20.
Abstract. The hypothesis that tropic responses result from lateral auxin gradients was examined in coleoptiles of red-light-grown maize ( Zea mays L.) by measuring endogenous IAA (indole-3-acetic acid) using a physicochemical method. Phototropic stimulation (unilateral blue light; 8s at 0.33 μmol m−2s−1) was found to induce a lateral gradient of solvent-extractable IAA in a subapical zone (2-7mm from the tip). The gradient occurred in advance of the bending response, with a decrease of IAA in the irradiated half and a compensatory increase in the shaded half. The maximal gradient measured was about 1:2 (irradiated: shaded). Diffusible IAA, obtained from the cut end of an excised coleoptile tip (3mm long, with its base split by 1mm), was similarly redistributed between the two sides, indicating that IAA is laterally translocated in the tip and that the resulting IAA gradient migrates to the subapical zone. A smaller gradient was induced in a basal zone (12-17mm from the tip). This gradient was initiated about 20 min later than that at the subapical zone, in agreement with a similar delay of bending observed in this zone. Gravitropic stimulation (60° from the vertical) also resulted in a lateral gradient of extractable IAA in the subapical zone, the gradient preceding the bending response. It is concluded that the tropisms of maize coleoptiles are mediated by IAA gradients, which are most likely caused by lateral IAA transport as the Cholodny-Went theory of tropisms describes. From IAA measurement data, the mean velocity of basipetally-polar transport of endogenous IAA was estimated to be 12 mm h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号