首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of aluminum neurobehavioral toxicity in the intact mammal   总被引:5,自引:0,他引:5  
Summary 1. Aluminum (Al) has been implicated in neurotoxic syndromes in several conditions, including Alzheimer's disease (AD). The developmental stage of the mammalian brain most susceptible to Al was determined in rabbits systemically exposed to Al during the prenatal, postnatal, or second month or for 1 month as adults or as aged subjects. Eyeblink reflex classical conditioning showed an Al-induced learning deficit only in the adult and aged rabbits.2. 4-Aminopyridine, which was reported to improve learning in AD subjects, attenuated this Al-induced learning deficit.3. Conditioned eyeblink acquisition is slower in AD subjects than controls, supporting the Al-loaded rabbit as a model of some AD effects.4. To determine if the Al-loaded rabbit modeled the AD cholinergic deficit, acetylcholine (Ach) overflow was measured in rabbit hippocampus using microdialysis. Aluminum pretreatment reduced basal and potassium-stimulated Ach overflow compared to controls.5. Acetylcholine overflow increased as control rabbits acquired the conditioned eyeblink reflex, then subsequently decreased, although conditioned eyeblink performance continued. In contrast, Al-loaded rabbits showed a delay in conditioned eyeblink acquisition and greatly attenuated Ach overflow. The Al-induced attenuation of Ach overflow may contribute to the Al-induced learning deficit.6. Brain Al entry was studied using microdialysis of blood, brain, and lateral ventricle. Aluminum rapidly entered the brain and lateral ventricle. Frontal cortical Al was greater than lateral ventricular Al, suggesting that Al primarily enters the brain through the cerebral microvasculature.7. The brain/blood Al ratio was always significantly less than 1. This ratio was influenced by the Al form administered, brain site and animal species. Thus, there appears to be an active process moving Al out of brain extracellular fluid (ECF).8. Brain and blood dialysate Ach concentrations were not different after cyanide addition to the dialysate, supporting the conclusion that an active process moves Al out of brain ECF.  相似文献   

2.
Aluminum (Al) and gallium (Ga) permeations of the blood-brain barrier (BBB) were assessed in rats. Unbound extracellular Al and Ga concentrations were ascertained at the two potential sites of BBB permeation, cerebral capillaries and choroid plexuses, by implantation of microdialysis probes in the frontal cortex and lateral ventricle, respectively. A microdialysis probe implanted in the jugular vein revealed unbound blood Al or Ga concentrations. Al or 67Ga citrate was administered via the femoral vein. Peak Al and Ga concentrations were seen within the first 10 min at all three sites. Area under the curve (concentration vs. time to final sample) values were calculated using RSTRIP. Within-rat overall frontal cortical/blood and lateral ventricular/blood ratios [brain/blood ratios (oBBRs)] were calculated from area under the curve values. Aluminum frontal cortical oBBRs were significantly higher than those for the lateral ventricle. Ga oBBRs were not significantly different between the two sites. Al and Ga oBBRs were significantly different in the lateral ventricle. These results suggest that the primary site of A1 permeation across the BBB is at cerebral capillaries, whereas Ga permeation across the BBB does not significantly differ between cerebral capillaries and choroid plexuses. The use of Ga as a model to study Al pharmacokinetics may not be appropriate in the elucidation of the site or mechanism of Al entry into the brain.  相似文献   

3.
4.
M Aschner  T W Clarkson 《Teratology》1987,36(3):321-328
Near-term pregnant (gestational day 17) and nonpregnant Long-Evans female rats were continuously infused into the external jugular vein with 0.1 mmole/hour L-cysteine, 0.1 mmole/hour L-leucine, or saline. At 24, 48, and 72 hours, 50 mumole/hour [203Hg]-MeHgCl was administered over 1 hour. Total 203Hg body burden, brain, kidney, liver, and blood 203Hg concentrations were determined at 96 hours by gamma scintillation spectrometry. Despite significantly greater 203Hg whole body retention in the pregnant animals 203Hg concentrations in blood, brain, kidney, and liver were higher in nonpregnant rats. In addition, brain 203Hg concentrations in both pregnant and virgin rats were significantly higher in L-cysteine-treated rats compared with controls. These results suggest that the fetus may act as a "sink" for MeHg, thus decreasing 203Hg concentrations in maternal blood, brain, kidney, and liver. Furthermore, the data indicate that brain uptake of methylmercury in both pregnant and nonpregnant rats is enhanced by chronic L-cysteine infusion, lending support to the hypothesis that methylmercury in the rat may be translocated across the blood-brain barrier by the neutral amino acid carrier transport system.  相似文献   

5.
The metabolism of iron (Fe) has been shown to interact with that of aluminum (Al) in relation to intestinal absorption, transport in the blood plasma, and the induction of lipid peroxidation and cellular damage. Also, dietary supplementation with citrate has been shown to increase the absorption of both metals and, in the presence of high intakes of Fe and Al, leads to excessive accumulation of both metals in the body. In this study, the likely interaction between Al and internal Fe metabolism was investigated using rats fed diets that were either deficient, sufficient, or loaded with Fe, with or without the addition of Al and sodium citrate. These diets commenced when the rats were 4 wk old and were continued for 9–11 wk. At that time, Fe metabolism as assessed by measurement of organ uptake of59Fe and125I-transferrin, after iv injection of transferrin labeled with both isotopes, plus measurement of tissue concentrations of nonheme Fe and Al. The Fedeficient diet and Fe-loaded diet led to states of Fe deficiency and Fe overload in the rats, and supplementation of the diet with Al increased Al levels in the kidneys, liver, and femurs, but, generally, only when the diet also contained citrate. Neither Al nor citrate supplementation of the diet had any effect on nonheme Fe concentrations in the liver, kidney, or brain, or on the uptake of59Fe or125I-transferrin by liver, kidney, brain, or spleen. Only with the femurs was a significant effect observed: increased59Fe uptake in association with increased Al intake. Therefore, using this animal model, there was little evidence for interaction between Fe and Al metabolism, and no support was obtained for the hypothesis that dietary supplementation with Fe and citrate can lead to excessive Fe absorption and deposition in the tissues.  相似文献   

6.
Aluminum (Al) may cause vitamin D-resistant osteomalacia and depress the serum levels of immunoreactive parathyroid hormone (iPTH) in patients treated with maintenance dialysis and those on total parental nutrition (TPN). Both conditions have been associated with low serum levels of 1,25(OH)2-vitamin D (1,25(OH)2D). Al may inhibit PTH secretion in vitro; however, induction of hypocalcemia can enhance endogenous PTH secretion in Al-loaded dogs and TPN patients. Despite hypocalcemia and/or increased endogenous iPTH levels, Al-loaded TPN patients fail to show the expected rise in serum 1,25(OH)2D levels. Such observations suggest that Al may impair the renal response to PTH. We studied vitamin D-replete rats given Al or saline vehicle IP for 5 days. Al and control rats then received a saline infusion with an IV bolus of PTH 1-34. Urinary cyclic AMP and P excretion rose in Al and control rats by 1 hr post-PTH, without differences between the groups. Serum P and ionized Ca levels were not different between Al and control rats. In other Al and control rats, serum 1,25(OH)2D levels were measured after saline without PTH. Serum 1,25(OH)2D levels were higher in controls given PTH than in those without, but 1,25(OH)2D levels were not different between Al rats given PTH and those with none. Thus, aluminum does not affect cyclic AMP or P excretion but may impair 25(OH)D-1 alpha-hydroxylase activity in response to PTH.  相似文献   

7.
There is increasing evidence that central noradrenaline (NA) transport mechanisms are implicated in the central nervous system complications of acute liver failure. In order to assess this possibility, binding sites for the high affinity NA transporter ligand [3H]-nisoxetine were measured by quantitative receptor autoradiography in the brains of rats with acute liver failure resulting from hepatic devascularization and in appropriate controls. In vivo microdialysis was used to measure extracellular brain concentrations of NA. Severe encephalopathy resulted in a significant loss of [3H]-nisoxetine sites in frontal cortex and a concomitant increase in extracellular brain concentrations of NA in rats with acute liver failure. A loss of transporter sites was also observed in thalamus of rats with acute liver failure. This loss of NA transporter sites could result from depletion of central NA stores due to a reserpine-like effect of ammonia which is known to accumulate to millimolar concentrations in brain in ischemic liver failure. Impaired NA transport and the consequent increase in synaptic concentrations and increased stimulation of neuronal and astrocytic noradrenergic receptors could be implicated in the pathogenesis of the encephalopathy and brain edema characteristic of acute liver failure.  相似文献   

8.
Aluminium (Al) is a neurotoxicant and appears as a possible etiological factor in Alzheimer's disease and other neurological disorders. The mechanisms of Al neurotoxicity are presently unclear but evidence has emerged suggesting that Al accumulation in the brain can alter neuronal signal transduction pathways associated with glutamate receptors. In cerebellar neurons in culture, long term-exposure to Al added 'in vitro' impaired the glutamate-nitric oxide (NO)-cyclic GMP (cGMP) pathway, reducing glutamate-induced activation of NO synthase and NO-induced activation of the cGMP generating enzyme, guanylate cyclase. Prenatal exposure to Al also affected strongly the function of the glutamate-NO-cGMP pathway. In cultured neurons from rats prenatally exposed to Al, we found reduced content of NO synthase and of guanylate cyclase, and a dramatic decrease in the ability of glutamate to increase cGMP formation. Activation of the glutamate-NO-cGMP pathway was also strongly impaired in cerebellum of rats chronically treated with Al, as assessed by in vivo brain microdialysis in freely moving rats. These findings suggest that the impairment of the Glu-NO-cGMP pathway in the brain may be responsible for some of the neurological alterations induced by Al.  相似文献   

9.
In sucklings, a high fraction of orally administered metals and radionuclides is retained in the gut. The location of elements in the gut is of interest because of their potential local health effect. The purpose of this work was to evaluate the influence of chelation therapy on gut retention and location of cadmium, mercury, and cerium in-suckling rats. Radionuclides115mCd,203Hg, and141Ce were administered orally to 6-d-old rats. Chelating agent Zn-DTPA (3.64 mmol/kg) was administered to animals that received115m Cd or141Ce and Na-DMPS (375 μmol/kg) to those that received203Hg, immediately and 24 h or 24 and 48 h after radionuclide administration. Radio-activity was determined in the whole body and gastrointestinal tract 6 d later. Both early and delayed chelation treatment very effectively reduced whole body retention, and this was mainly owing to reduced gut retention. Although chelation therapy reduced gut retention of administered radionuclides 3–30 times, the site of metal accumulation and retention in the intestine remained unchanged. For all 3 radionuclides, both after early and delayed therapy, the site of metal accumulation was always the lower part of small intestine—ileum.  相似文献   

10.
Suckling rats were injected subcutaneously with doses of L-ethionine (0.1 mumole/g body wt) at intervals of 12 hr. In the latter group, phenylalanine hydroxylase was effectively inhibited in vivo resulting in hyperphenylalaninemia and phenylketonuria. Due to the well-known sex-specific differences in L-ethionine metabolism female rats were much more affected by chronic administration of L-ethionine. The underlying mechanism of enzyme inhibition by ethionine could be disturbed protein synthesis and impaired protein phosphorylation, which was suggested by pronounced decreases in ATP content in liver. In the high dosage group depletions mainly of the branched-chain amino acids and lysine occurred in serum and brain, whereas the concentrations of methionine and tryptophan were increased. Tyrosine tended to be decreased in the course of hyperphenylalaninemia. Hyperphenylalaninemia and other resulting amino acid imbalances obviously impaired brain development during the early postnatal period. Concomitantly with reductions in protein concentrations, the activity of cathepsin D, a major intralysosomal acid proteinase, was increased in brain, suggesting also higher protein catabolism in brain. Side effects of this treatment, however, were higher mortality, loss of body weight, and a general impression of delayed development, resembling a state of undernutrition to some extent. These obvious side effects of ethionine limit the usefulness of ethionine as a suitable model for classic phenylketonuria in suckling rats.  相似文献   

11.
The distribution of aluminum into and out of the brain   总被引:1,自引:0,他引:1  
The extent, rate and possible mechanism(s) by which aluminum enters and is removed from the brain are presented. Introduction of Al into systemic circulation as Al.transferrin, the predominant Al species in plasma, resulted in about 7 x 10(-5) of the dose in the brain 1 day after injection. This brain Al entry could be mediated by transferrin-receptor-mediated endocytosis (TfR-ME). When Al.citrate, the predominant small molecular weight Al species in blood plasma, is introduced systemically, Al rapidly enters the brain. The rate of Al.citrate brain influx suggests a more rapid process than mediated by diffusion or TfR-ME. The question has been raised: "Is the brain a 'one-way sink' for aluminum?". Clinical observations are a basis for this suggestion. Rat brain 26Al concentrations decreased only slightly from 1 to 35 days after systemic 26Al injection, in the absence or presence of the aluminum chelator desferrioxamine, suggesting prolonged brain Al retention. However, studies of brain and blood extracellular Al at steady state, using microdialysis, suggest brain Al efflux exceeds influx, suggesting carrier-mediated brain Al efflux. The predominant brain extracellular fluid Al species is probably Al.citrate. The hypothesis that brain Al efflux, presumably of Al.citrate, is mediated by the monocarboxylate transporter was tested and supported. Although some Al that enters the brain is rapidly effluxed, it is suggested that a fraction enters brain compartments within 24 h from which it is only very slowly eliminated.  相似文献   

12.
The hypothesis that combination of deferasirox and deferiprone chelators might be more efficient as combined therapy than single therapy in removing mercury from the body was considered. Male Wistar rats were exposed to mercury vapor for 2 weeks. After mercury administration some abnormal clinical signs such as red staining around the eyes, greenish mottling on the liver, weakness, loss of hair and weight, were observed in animals. Chelators were given orally after mercury vapor application for 2 weeks. Mercury toxicity symptoms in rats decreased after drug administration. After chelation therapy, these rats were anesthetized with ether vapor and immobilized by cervical dislocation and then their heart, liver, kidneys, intestine, spleen and testicles were sampled for determination of mercury and iron concentration. The combined chelation therapy results showed that these chelators are able to remove mercury from the body and toxicity symptoms decreased.  相似文献   

13.
Abstract: Studies on brain slices and homogenates suggest that chronic lithium treatment affects the activity of adenylate cyclases in the brain. To investigate whether chronic lithium administration influences the cyclic AMP (cAMP) synthesis in vivo, we have used microdialysis to assess lithium-induced alterations in extracellular concentrations of cAMP in the dorsal hippocampus of freely moving rats. Local infusion of noradrenaline or forskolin through the microdialysis probes produced rapid increases in the extracellular concentrations of cAMP in the dorsal hippocampus. Lithium administration for 4 weeks (serum lithium concentration of 0.8 ± 0.11 mmol/L) did not affect the baseline levels of cAMP. However, in rats fed a lithium-supplemented diet, noradrenaline- and forskolin-induced enhancement of cAMP levels was decreased in the dorsal hippocampus. The rats were videotaped 18 min before and 27 min after initiating the introduction of noradrenaline and forskolin into the dorsal hippocampus. The infusion of agonists induced a moderate behavioral excitation. Rats treated with lithium were less active compared with the control rats. Taken together, these data confirm that chronic lithium administration affects the cAMP signaling system in the brain of living animals, presumably by interfering with a site beyond the receptor level.  相似文献   

14.
The present study was conducted to assess in rats the effects of oral aluminum (Al) exposure on calcium (Ca), magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) accumulation and urinary excretion. Three groups of plug-positive Sprague-Dawley (SD) rats were given by gavage 0, 200, and 400 mg/kg/d of Al(OH)3 on gestational days 1–20. Three groups of nonpregnant female SD rats of the same age received Al(OH)3 by gavage at the same doses for 20 consecutive days. At the end of the treatment period, 24-h urine samples were collected for analysis of Al and essential elements. Subsequently, all animals were sacrificed and samples of liver, bone, spleen, kidneys, and brain were removed for metal analyses. With some exceptions, the urinary amounts of Al, Mn, and Cu excreted by pregnant animals as well as the urinary levels of Al excreted by nonpregnant rats were higher in the Al-treated groups than in the respective control groups. Although higher Al levels were found in the liver of pregnant rats, the concentrations of Al in the brain of these animals were lower than those found in the same tissues of nonpregnant rats. With regard to the essential elements, tissue accumulation was most affected in pregnant than in nonpregnant animals. In pregnant rats, the hepatic and renal concentrations of Ca, Mg, Mn, Cu, Zn, and Fe, as well as the levels of Ca in bone, and the concentrations of Cu in brain were significantly higher in the Al-exposed groups than in the control group. According to the current results, oral Al exposure during pregnancy can produce significant changes in the tissue distribution of a number of essential elements.  相似文献   

15.
Although there is a considerable interest of high-protein, low-carbohydrate diets to manage weight control, their safety is still the subject of considerable debate. They are suspected to be detrimental to the renal and hepatic functions, calcium balance, and insulin sensitivity. However, the long-term effects of a high-protein diet on a broad range of parameters have not been investigated. We studied the effects of a high-protein diet in rats over a period of 6 mo. Forty-eight Wistar male rats received either a normal-protein (NP: 14% protein) or high-protein (HP: 50% protein) diet. Detailed body composition, plasma hormones and nutrients, liver and kidney histopathology, hepatic markers of oxidative stress and detoxification, and the calcium balance were investigated. No major alterations of the liver and kidneys were found in HP rats, whereas NP rats exhibited massive hepatic steatosis. The calcium balance was unchanged, and detoxification markers (GSH and GST) were enhanced moderately in the HP group. In contrast, HP rats showed a sharp reduction in white adipose tissue and lower basal concentrations of triglycerides, glucose, leptin, and insulin. Our study suggests that the long-term consumption of an HP diet in male rats has no deleterious effects and could prevent metabolic syndrome.  相似文献   

16.
Parasympathetic nerve (PSN) innervates taste cells of the frog taste disk, and electrical stimulation of PSN elicited a slow hyperpolarizing potential (HP) in taste cells. Here we report that gustatory receptor potentials in frog taste cells are depressed by PSN-induced slow HPs. When PSN was stimulated at 30 Hz during generation of taste cell responses, the large amplitude of depolarizing receptor potential for 1 M NaCl and 1 mM acetic acid was depressed by approximately 40% by slow HPs, but the small amplitude of the depolarizing receptor potential for 10 mM quinine-HCl (Q-HCl) and 1 M sucrose was completely depressed by slow HPs and furthermore changed to the hyperpolarizing direction. The duration of the depolarizing receptor potentials depressed by slow HPs prolonged with increasing period of PSN stimulation. As tastant-induced depolarizing receptor potentials were increased, the amplitude of PSN-induced slow HPs inhibiting the receptor potentials gradually decreased. The mean reversal potentials of the slow HPs were approximately -1 mV under NaCl and acetic acid stimulations, but approximately -14 mV under Q-HCl and sucrose stimulations. This implies that when a slow HP was evoked on the same amplitude of depolarizing receptor potentials, the depression of the NaCl and acetic acid responses in taste cells was larger than that of Q-HCl and sucrose responses. It is concluded that slow HP-induced depression of gustatory depolarizing receptor potentials derives from the interaction between gustatory receptor current and slow hyperpolarizing current in frog taste cells and that the interaction is stronger for NaCl and acetic acid stimulations than for Q-HCl and sucrose stimulations.  相似文献   

17.
Iron (Fe) and aluminum (Al) have been implicated in the pathogenesis of Alzheimer's disease (AD). In this study, we examined neuronal and glial cells to clarify which contributes most to metal accumulation after internalization through the transferrin-independent iron uptake (Tf-IU) systems in primary neuronal and glial predominant (NP and GP) cells from rat cerebral cortex, which affect the accumulation of transition metals in a variety of cultured cells. Al more significantly upregulated the Tf-IU activity in GP cells than in NP cells. GP cells were more resistant to Fe and Al exposure than NP cells. However, a chemiluminescence analysis specific for reactive oxygen species (ROS) showed that ROS levels in Fe- or Al-loaded NP cells were twice as high as in Fe- or Al-loaded GP cells. Northern blot analysis and gel retardation assay showed that the Al and Fe exposure taken up by the cells suppress Tf receptor mRNA expression to a greater extent in GP than NP cells, indicating that Al and Fe more markedly accumulate in glial than in neuronal cells. These results suggest that glial cells rather than neuronal cells contribute to the metal accumulation and are more resistant to oxidative stress caused by metals than neuronal cells. The present study may help to explain the pathogenesis of neurodegeneration in AD disorders caused by metal-generated oxidative stress.  相似文献   

18.
Intracellular recordings were made from the taste cells of atropinized bullfrogs while the glossopharyngeal (GP) nerve fibres were electrically stimulated. Two types of slow potential, slow hyperpolarizing potentials (HPs) and slow depolarizing potentials (DPs), were induced in the taste cells. The slow HPs appeared when the lingual capillary blood flow was kept above 0.7 mm/s, whereas the slow DPs appeared when the blood flow was slowed down below 0.7 mm/s. The membrane resistance of a taste cell increased during the generation of a slow HP, but decreased during the generation of a slow DP. The reversal potentials for the slow HPs and the slow DPs were recorded at the same membrane potential (-11 to approximately -13 mV). Activation of non-selective cation channels possibly induced the slow DP and inactivation of those channels possibly induced the slow HP in the taste cell membrane. Electrical stimulation of the GP nerve activated a population of C fibres in the nerve and possibly released neurotransmitters from the nerve terminals. Released neurotransmitters might cause modulation of the membrane conductance in taste cells that leads to generation of the slow potentials. The present data suggest that slow HPs and slow DPs evoked in the taste cells of atropinized frogs by GP nerve stimulation are induced by putative neurotransmitters in the taste disc.  相似文献   

19.
The courtship behavior of the cabbage moth, Mamestra brassicae(L.), was studied in moving air conditions in a wind tunnel, using video techniques. Quantitative analyses were undertaken to determine the behavioral sequence occurring in the courtship. Comparison of successful and unsuccessful courtship suggested that courtship success was more dependent on the behavior of the female than that of the male. In an attempt to elucidate the function of the male hair-pencils (HPs), courtships involving males without HPs were also studied. HP removal did not affect the overall courtship success rate of males, but detailed analysis showed significant changes infernale behavior during such courtships. HP removal also affected female behavior following pair formation, with females struggling more when paired with males without HPs. Consequently, it is proposed that the HP volatiles act as an arrestant for the female, both during courtship and after pair formation, to increase female acceptance and to prevent premature termination of copulation. Experiments were also conducted to test previous hypotheses for HP function. However, no evidence was found to suggest that the HP volatiles in M. brassicaeact to attract females, affect female calling behavior, or affect the behavior of other males. A further possible function of HPs in defense is discussed.  相似文献   

20.
Aluminum (Al) and iron (Fe) have been implicated as playing a toxic role in the pathologic lesions of Alzheimer's disease. In the following report we describe the uptake and toxicity of Al, the effect of Al on Fe uptake, and the expression of neurofibrillary tangle (NFT) protein in murine neuroblastoma cells (Neuro 2A). Significant cell Al uptake and inhibition of cell growth were seen in Neuro 2A cells at 24, 48, 72, and 96 h after plating in medium containing Al transferrin (Al-Tf) and Al citrate. Al-loaded Neuro 2A cells showed increased rates of 59Fe and 125I-Tf uptake and total cellular Fe content at 24, 48, 72, and 96 h after plating compared with control cultures. Significant increases in NFT protein staining were detected in Al-exposed cells at 72 and 96 h in culture compared with controls. The intensity of NFT staining in Al-loaded cells was directly proportional to the time in culture. There was no difference in malonyldialdehyde levels measured in control versus Al-loaded Neuro 2A cells. These results suggest that the accumulation of Al in Neuro 2A cells resulted in increased uptake of Fe, inhibition of cell growth, and expression of NFT protein, partially mimicking the pathological hallmarks of Alzheimer's disease. This model system may also be applicable for Al-induced dialysis dementia, because the Al concentrations at which cell toxicity occurred can be found in dialysis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号