共查询到20条相似文献,搜索用时 0 毫秒
1.
Physiological Response of Lactobacillus plantarum to Salt and Nonelectrolyte Stress 总被引:2,自引:0,他引:2
下载免费PDF全文

Erwin Glaasker Frans S. B. Tjan Pieter F. Ter Steeg Wil N. Konings Bert Poolman 《Journal of bacteriology》1998,180(17):4718-4723
In this report, we compared the effects on the growth of Lactobacillus plantarum of raising the medium molarity by high concentrations of KCl or NaCl and iso-osmotic concentrations of nonionic compounds. Analysis of cellular extracts for organic constituents by nuclear magnetic resonance spectroscopy showed that salt-stressed cells do not contain detectable amounts of organic osmolytes, whereas sugar-stressed cells contain sugar (and some sugar-derived) compounds. The cytoplasmic concentrations of lactose and sucrose in growing cells are always similar to the concentrations in the medium. By using the activity of the glycine betaine transport system as a measure of hyperosmotic conditions, we show that, in contrast to KCl and NaCl, high concentrations of sugars (lactose or sucrose) impose only a transient osmotic stress because external and internal sugars equilibrate after some time. Analysis of lactose (and sucrose) uptake also indicates that the corresponding transport systems are neither significantly induced nor activated directly by hyperosmotic conditions. The systems operate by facilitated diffusion and have very high apparent affinity constants for transport (>50 mM for lactose), which explains why low sugar concentrations do not protect against hyperosmotic conditions. We conclude that the more severe growth inhibition by salt stress than by equiosmolal concentrations of sugars reflects the inability of the cells to accumulate K+ (or Na+) to levels high enough to restore turgor as well as deleterious effects of the electrolytes intracellularly. 相似文献
2.
Changes in Photorespiratory Enzyme Activity in Response to Limiting CO(2) in Chlamydomonas reinhardtii
下载免费PDF全文

The activity of two photorespiratory enzymes, phosphoglycolate phosphatase (PGPase) and glycolate dehydrogenase (glycolate DH), changes when CO2-enriched wild-type (WT) Chlamydomonas reinhardtii cells are transferred to air levels of CO2. Adaptation to air levels of CO2 by Chlamydomonas involves induction of a CO2-concentrating mechanism (CCM) which increases the internal inorganic carbon concentration and suppresses oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. PGPase in cell extracts shows a transient increase in activity that reaches a maximum 3 to 5 hours after transfer and then declines to the original level within 48 hours. The decline in PGPase activity begins at about the time that physiological evidence indicates the CCM is approaching maximal activity. Glycolate DH activity in 24 hour air-adapted WT cells is double that seen in CO2-enriched cells. Unlike WT, the high-CO2-requiring mutant, cia-5, does not respond to limiting CO2 conditions: it does not induce any known aspects of the CCM and it does not show changes in PGPase or glycolate DH activities. Other known mutants of the CCM show patterns of PGPase and glycolate DH activity after transfer to limiting CO2 which are different from WT and cia-5 but which are consistent with changes in activity being initiated by the same factor that induces the CCM, although secondary regulation must also be involved. 相似文献
3.
Natalia Jiménez María Esteban-Torres José Miguel Manche?o Blanca de las Rivas Rosario Mu?oz 《Applied and environmental microbiology》2014,80(10):2991-2997
Lactobacillus plantarum is frequently isolated from the fermentation of plant material where tannins are abundant. L. plantarum strains possess tannase activity to degrade plant tannins. An L. plantarum tannase (TanBLp, formerly called TanLp1) was previously identified and biochemically characterized. In this study, we report the identification and characterization of a novel tannase (TanALp). While all 29 L. plantarum strains analyzed in the study possess the tanBLp gene, the gene tanALp was present in only four strains. Upon methyl gallate exposure, the expression of tanBLp was induced, whereas tanALp expression was not affected. TanALp showed only 27% sequence identity to TanBLp, but the residues involved in tannase activity are conserved. Optimum activity for TanALp was observed at 30°C and pH 6 in the presence of Ca2+ ions. TanALp was able to hydrolyze gallate and protocatechuate esters with a short aliphatic alcohol substituent. Moreover, TanALp was able to fully hydrolyze complex gallotannins, such as tannic acid. The presence of the extracellular TanALp tannase in some L. plantarum strains provides them an advantage for the initial degradation of complex tannins present in plant environments. 相似文献
4.
Summary The influence of medium pH on the regulation of glucose catabolism by Lactobacillus plantarum 8014 was examined in anaerobic chemostat cultures. When L. plantarum was grown in a chemostat at pH 5.5, and the pH shifted to pH 7.5, acetate was produced in addition to lactate and acetoin. After the shift, acetate kinase and NAD-dependent lactate dehydrogenase activities increased while the acetoin dehydrogenase and alpha-acetolactate synthase activities decreased. The high acetate kinase activity together with low acetoin dehydrogenase and alpha-acetolactate synthase activities may explain why L. plantarum made more acetate at the expense of acetoin in response to alkaline conditions.Offprint requests to: T.J. Montville 相似文献
5.
In contrast to plant agglutinins, biological activities of animal/human lectins are not well defined yet. Testing a panel of seven mammalian carbohydrate-binding proteins we have found that the dimeric lectin from chicken liver (CL-16) was a stimulator of H2O2 release from human neutrophils as well as effector for induction of cytosolic Ca2+ and pH increase in rat thymocytes. Activity of this lectin was comparable to potent galactoside-specific plant lectins such as Viscum album L. agglutinin. The activities of the tested plant lectins depended significantly on their nominal carbohydrate specificity as well as on the source. The results indicate that endogenous lectins may be involved in the regulation of neutrophil and lymphocyte functions by elicitation of selective biosignaling reactions. 相似文献
6.
Conversion of Pyruvate to Acetoin Helps To Maintain pH Homeostasis in Lactobacillus plantarum 总被引:2,自引:0,他引:2
下载免费PDF全文

Pyruvate is the substrate for diacetyl and acetoin synthesis by lactobacilli. Exogenous pyruvate stimulates acetoin production when glucose is present as an energy source. In Lactobacillus plantarum ATCC 8014, the energy derived from glucose via glycolysis generated a constant proton motive force of about -120 mV. At a low external pH, energized cells rapidly transported and accumulated pyruvate but did not do so when they were deenergized by nigericin. When large amounts of pyruvate were transported and subsequently accumulated internally, the cotransported protons rapidly lowered the internal pH. The conversion of pyruvate to acetoin instead of acidic end products contributed to the maintenance of pH homeostasis. This is the first report showing that the conversion of pyruvate to acetoin serves as a mechanism of pH homeostasis. 相似文献
7.
Energy conservation in malolactic fermentation by Lactobacillus plantarum and Lactobacillus sake 总被引:1,自引:0,他引:1
A comparably poor growth medium containing 0.1% yeast extract as sole non-defined constituent was developed which allowed
good reproducible growth of lactic acid bacteria. Of seven different strains of lactic acid bacteria tested, only Lactobacillus plantarum and Lactobacillus sake were found to catalyze stoichiometric conversion of l-malate to l-lactate and CO2 concomitant with growth. The specific growth yield of malate fermentation to lactate at pH 5.0 was 2.0 g and 3.7 g per mol
with L. plantarum and L. sake, respectively. Growth in batch cultures depended linearly on the malate concentration provided. Malate was decarboxylated
nearly exclusively by the cytoplasmically localized malo-lactic enzyme. No other C4-dicarboxylic acid-decarboxylating enzyme activity could be detected at significant activity in cell-free extracts. In pH-controlled
continuous cultures, L. plantarum grew well with glucose as substrate, but not with malate. Addition of lactate to continuous cultures metabolizing glucose
or malate decreased cell yields significantly. These results indicate that malo-lactic fermentation by these bacteria can
be coupled with energy conservation, and that membrane energetization and ATP synthesis through this metabolic activity are
due to malate uptake and/or lactate excretion rather than to an ion-translocating decarboxylase enzyme. 相似文献
8.
G. Spano L. Beneduce L. de Palma M. Quinto A. Vernile S. Massa 《World journal of microbiology & biotechnology》2006,22(8):769-773
Summary Screening of strains isolated from red wine undergoing malolactic fermentation allowed the identification of lactic acid bacteria able to degrade arginine. A denaturing gradient gel electrophoresis approach, using the rpoB gene as the molecular target, was developed in order to characterize the isolated strains. Several strains were identified as Lactobacillus plantarum and were typed by RAPD-PCR with several randomly designed primers. Almost all of the␣L. plantarum strains identified were able to produce citrulline and ammonia, suggesting that the ability of␣L.␣plantarum to degrade arginine is a common feature in wine. During the characterization of the newly identified L.␣plantarum strains, the presence of genes coding for the arginine deiminase (ADI) pathway was observed in the strains able to produce citrulline, while the lack of this genes was observed in strain unable to produce citrulline. These results suggest that the degradation of arginine in L. plantarum is probably strain-dependent. 相似文献
9.
The streptococcal plasmid pAM beta 1 (erythromycin resistance) was transferred via conjugation from Streptococcus faecalis to Lactobacillus plantarum and was transferred among L. plantarum strains. Streptococcus sanguis Challis was transformed with pAM beta 1 isolated from these transconjugants, and transformants harboring intact pAM beta 1 could conjugate the plasmid back to L. plantarum. 相似文献
10.
Population Heterogeneity of Lactobacillus plantarum WCFS1 Microcolonies in Response to and Recovery from Acid Stress
下载免费PDF全文

Colin J. Ingham Marke Beerthuyzen Johan van Hylckama Vlieg 《Applied microbiology》2008,74(24):7750-7758
Within an isogenic microbial population in a homogenous environment, individual bacteria can still exhibit differences in phenotype. Phenotypic heterogeneity can facilitate the survival of subpopulations under stress. As the gram-positive bacterium Lactobacillus plantarum grows, it acidifies the growth medium to a low pH. We have examined the growth of L. plantarum microcolonies after rapid pH downshift (pH 2 to 4), which prevents growth in liquid culture. This acidification was achieved by transferring cells from liquid broth onto a porous ceramic support, placed on a base of low-pH MRS medium solidified using Gelrite. We found a subpopulation of cells that displayed phenotypic heterogeneity and continued to grow at pH 3, which resulted in microcolonies dominated by viable but elongated (filamentous) cells lacking septation, as determined by scanning electron microscopy and staining cell membranes with the lipophilic dye FM4-64. Recovery of pH-stressed cells from these colonies was studied by inoculation onto MRS-Gelrite-covered slides at pH 6.5, and outgrowth was monitored by microscopy. The heterogeneity of the population, calculated from the microcolony areas, decreased with recovery from pH 3 over a period of a few hours. Filamentous cells did not have an advantage in outgrowth during recovery. Specific regions within single filamentous cells were more able to form rapidly dividing cells, i.e., there was heterogeneity even within single recovering cells. 相似文献
11.
Bioenergetic consequences of catabolic shifts by Lactobacillus plantarum in response to shifts in environmental oxygen and pH in chemostat cultures. 总被引:2,自引:3,他引:2
下载免费PDF全文

Proton motive force (PMF), intracellular end product concentrations, and ATP levels were determined when a steady-state Lactobacillus plantarum 8014 anaerobic chemostat culture was shifted to an aerobic condition or was shifted from pH 5.5 to 7.5. The PMF and intracellular ATP levels increased immediately after the culture was shifted from anaerobic to aerobic conditions. The concentrations of intracellular lactate and acetate, which exported protons that contributed to the proton gradient, changed in the same fashion. The H+/lactate stoichiometry, n, varied from 0.8 to 1.2, and the H+/acetate n value changed from 0.8 to 1.6 at 2 h after the shift to aerobic conditions. The n value for acetate excretion remained elevated at aerobic steady state. When the anaerobic culture was shifted from pH 5.5 to 7.5, intracellular ATP increased 20% immediately even though the PMF decreased 50% as a result of the depletion of the transmembrane proton gradient. The H+/lactate n value changed from 0.7 to 1.8, and n for H+/acetate increased from 0.9 to 1.9 at pH 7.5 steady state. In addition, the H+/acetate stoichiometry was always higher than the n value for H+/lactate; both were higher in alkaline than aerobic conditions, demonstrating that L. plantarum 8014 coexcreted more protons with end products to maintain intracellular pH homeostasis and generate proton gradients under aerobic and alkaline conditions. During the transient to pH 7.5, the n value for H+/acetate approached 3, which would spare one ATP. 相似文献
12.
Oxidative stress induces cardiac myocyte apoptosis. At least some effects are probably mediated through changes in gene expression. Using Affymetrix arrays, we examined the changes in gene expression induced by H(2)O(2) (0.04, 0.1, and 0.2mM; 2 and 4h) in rat neonatal ventricular myocytes. Changes in selected upregulated genes were confirmed by ratiometric RT-PCR. p21(Cip1/Waf1) was one of the only two genes upregulated in all conditions studied. Of the heat shock proteins, only Hsp70/70.1 was induced by H(2)O(2) with no change in the expression of Hsp25, Hsp60 or Hsp90. Heme oxygenase 1 was also potently upregulated, but not heme oxygenases 2 or 3. Of the intercellular adhesion proteins, syndecan-1 was significantly upregulated in response to H(2)O(2), with little change in the expression of other syndecans and no change in expression of any of the integrins studied. Thus, oxidative stress, exemplified by H(2)O(2), selectively promotes the expression of specific gene family members. 相似文献
13.
The streptococcal plasmid pAM beta 1 (erythromycin resistance) was transferred via conjugation from Streptococcus faecalis to Lactobacillus plantarum and was transferred among L. plantarum strains. Streptococcus sanguis Challis was transformed with pAM beta 1 isolated from these transconjugants, and transformants harboring intact pAM beta 1 could conjugate the plasmid back to L. plantarum. 相似文献
14.
The role of trehalose as cell protector against oxidative stress induced by H(2)O(2) has been studied in Saccharomyces cerevisiae mutants in which the two trehalase genes ATH1 and NTH1 are deleted. The addition of low H(2)O(2) concentrations to proliferating cultures of either strain did not harm cell viability and induced a marked activity to Nth1p, but with no significant level of trehalose accumulation. This pattern was reversed after a more severe H(2)O(2) treatment that caused drastic cell killing. The most severe phenotype corresponded to the Delta nth1 mutant. Under these conditions, the increase in Nth1p was abolished and a three-fold rise in trehalose content was recorded concomitant with activation of the trehalose synthase complex. The behavior of the double-disruptant Delta ath1Delta nth1 mutant was identical to that of wild-type cells, although in exponential cultures Ath1p activity was virtually undetectable upon exposure to H(2)O(2). Furthermore, these strains displayed an adaptive response to oxidative stress that was independent of intracellular trehalose synthesis. Our data strongly suggest that trehalose storage in budding yeasts is not an essential protectant in cell defense against oxidative challenge. 相似文献
15.
Effect of acidic pH and salt on acid end-products by Lactobacillus plantarum in aerated, glucose-limited continuous culture 总被引:1,自引:1,他引:1
In aerated, glucose-limited continuous culture, Lactobacillus plantarum altered its metabolic pathways of acid production in response to changes in environmental pH. Under acidic conditions, acetate and L-lactate production decreased with decreasing pH, whereas levels of D-lactate increased. In the presence of 6% NaCl, acetate and lactate production continued, but no acetate was detected at pH 4.5. 相似文献
16.
Conversion of Phenylalanine to Benzaldehyde Initiated by an Aminotransferase in Lactobacillus plantarum 总被引:3,自引:0,他引:3
下载免费PDF全文

The production of benzaldehyde from phenylalanine has been studied in various microorganisms, and several metabolic pathways have been proposed in the literature for the formation of this aromatic flavor compound. In this study, we describe benzaldehyde formation from phenylalanine by using a cell extract of Lactobacillus plantarum. Phenylalanine was initially converted to phenylpyruvic acid by an aminotransferase in the cell extract, and the keto acid was further transformed to benzaldehyde. However, control experiments with boiled cell extract revealed that the subsequent conversion of phenylpyruvic acid was a chemical oxidation step. It was observed that several cations could replace the extract in the conversion of phenylpyruvic acid to benzaldehyde. Addition of Cu(II) ions to phenylpyruvic acid resulted not only in the formation of benzaldehyde, but also in the generation of phenylacetic acid, mandelic acid, and phenylglyoxylic acid. These compounds have been considered intermediates in the biological conversion of phenylalanine. The chemical conversion step of phenylpyruvic acid was dependent on temperature, pH, the availability of cations, and the presence of oxygen. 相似文献
17.
Enzyme Activities in Relation to pH and Lactate in Postmortem Brain in Alzheimer-Type and Other Dementias 总被引:5,自引:5,他引:5
Celia M. Yates John Butterworth Mara C. Tennant† Alexander Gordon‡ 《Journal of neurochemistry》1990,55(5):1624-1630
Phosphate-activated glutaminase, glutamic acid decarboxylase, pyruvate dehydrogenase, succinic dehydrogenase, pH, and lactate were measured in frontal cortex and caudate nucleus of postmortem brains from cases of Alzheimer-type dementia (ATD), Down's syndrome, Huntington's disease, and one case of Pick's disease, as well as from sudden death and agonal controls. Lactate levels were higher and pH, phosphate-activated glutaminase, and glutamic acid decarboxylase levels were lower in the agonal controls than in the sudden death controls. Phosphate-activated glutaminase and glutamic acid decarboxylase were correlated with tissue pH and lactate, and also were reduced by in vitro acidification, suggesting that the low activities of these enzymes in agonal controls were related to decreased pH consequent upon lactate accumulation. Compared with control tissues at the same pH, phosphate-activated glutaminase and glutamic acid decarboxylase were unaltered in ATD and Down's frontal cortex and reduced in Huntington's caudate nucleus, and glutamic acid decarboxylase was reduced in Huntington's frontal cortex. These data suggest that GABAergic neurons are not affected in ATD and confirm the GABAergic defect in Huntington's disease. Pyruvate dehydrogenase and succinic dehydrogenase activities were the same in agonal controls and sudden death controls and were unaffected by acid pH and lactate in vitro, and pyruvate dehydrogenase was not correlated with pH or lactate. Reduced pyruvate dehydrogenase in frontal cortex of individual ATD, Down's, and Pick's cases, and in the caudate nucleus of Huntington's and Down's cases, was accompanied by gliosis/neuron loss. We conclude that decreased pyruvate dehydrogenase reflects neuronal loss. 相似文献
18.
19.
Patrycja Konieczna Elisa Schiavi Mario Ziegler David Groeger Selena Healy Ray Grant Liam O’Mahony 《PloS one》2015,10(3)
The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses. 相似文献
20.
Sucrolytic Enzyme Activities in Cotyledons of the Faba Bean (Developmental Changes and Purification of Alkaline Invertase) 总被引:1,自引:2,他引:1
下载免费PDF全文

In terms of maximum extractable catalytic activity, sucrose synthase is the predominant sucrolytic enzyme in developing cotyledons of faba bean (Vicia faba L.). Although acid invertase activity is extremely low, there is significant activity of alkaline invertase, the majority of which is extractable only with high concentrations of NaCl. Calculations of potential activity in vivo indicate that alkaline invertase is the predominant sucrolytic enzyme from 50 days after anthesis onward. However, at almost all stages of cotyledon development analyzed, the maximum extractable catalytic activities of both enzymes is in excess of the actual rate of starch deposition. Two forms of alkaline invertase were identified in developing cotyledons. The major form has been purified to homogeneity, and antibodies have been raised against it. The native protein has a molecular mass of about 238 [plus or minus] 4.5 kD. It is apparently a homotetramer (subunit molecular mass 53.4 [plus or minus] 0.9 kD). The enzyme has a pH optimum of 7.4, an isoelectric point of 5.2, and a Km[sucrose] of 10 mM and is inhibited by Tris (50% inhibition at 5 mM) and fructose (30% inhibition at 10 mM). Bean alkaline invertase is a [beta]-fructofuranosidase with no significant activity against raffinose, stachyose, trehalose, maltose, or lactose. 相似文献