首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anabaena spiroides has the ability to maintain intense biomass production for extensive periods in the epilimnion of a small eutrophic lake characterized by conditions shown to cause photooxidative death in a number of other phytoplankton. By the enhancement of carotenoid synthesis chlorophyll a was protected from photooxidation and prevented from catalyzing other photooxidative reactions within the cells. By temporally separating CO2 and N2 fixation, maximum utilization of photosynthetically active radiation was achieved. Because CO2 fixation was more sensitive than N2 fixation to a high oxygen concentration, the former was maximized during morning hours, before the afternoon buildup of dissolved oxygen. The diurnal partitioning of carbon and N2 fixation has two additional advantages; possible competition for reductant-generating compounds is minimized, and adequate endogenous pools of carbon skeletons are assured to accept newly fixed ammonia. Hence, Anabaena, far from undergoing photooxidative death, appears to utilize a physiological strategy which allows optimization of radiant energy use for reductive processes and dominance of surface waters and shading of deeper phytoplankton during summer blooms.  相似文献   

2.
3.
Diazotrophic heterocystous cyanobacteria Nostoc calcicola and Anabaena sp. ARM 629 were investigated for their ability to grow in presence of sodium bicarbonate (NaHCO3) or carbon dioxide (CO2) under cultural conditions. Maximum growth was observed in 75 mM NaHCO3 and 5% CO2 in N. calcicola and Anabaena ARM 629, respectively. Although their growth rate declined, N. calcicola and Anabaena sp. could tolerate upto 250 mM NaHCO3 and 20% CO2, respectively. N-methyl-N'-nitro N nitrosoguanidine induced mutants of these cyanobacteria were isolated which showed growth upto 1 M NaHCO3 (N. calcicola) or 50% CO2 (Anabaena sp.) in comparison to their wild types. The mutants also showed cross-resistance to either of the inorganic carbon compounds, which was not observed for wild type. It was concluded that mutants were altered in multiple properties enabling them to grow at elevated levels of inorganic carbon compounds.  相似文献   

4.
外源甘露醇可在一定程度上增强鱼腥藻Anabaenasp.7120固氮的抗渗透胁迫能力.厌氧(Ar中)、能量供应受阻(暗处理、添加ATP形成的抑制剂)、合成固氮酶蛋白所需物质供应不足(单加N2不加CO2)以及分子氧下,甘露醇的有益作用减小或消失,反之(正常光照、通气环境、提高CO2浓度,同时供应H2和O2或CO2和N2)则这一作用增大。渗透胁迫下,外源蔗糖对甘露醇支持蓝藻固氮的作用不明显。  相似文献   

5.
Photooxidative Death in Blue-Green Algae   总被引:21,自引:2,他引:19  
When incubated in the light under 100% oxygen, wild-type blue-green algae (Anacystis nidulans, Synechococcus cedrorum) die out rapidly at temperatures of 4 to 15 C, and at 35 C (or at 26 C in the case of S. cedrorum) in the absence of CO(2). Photosynthesis is impaired in these cells long before they die. Blocking of photosystem II at high temperatures in the presence of CO(2) sensitizes the algae to photooxidative death. Photooxidative death and bleaching of photosynthetic pigments are separable phenomena. Photooxidative conditions were demonstrated in Israeli fish ponds using A. nidulans as the test organism during dense summer blooms, when dissolved CO(2) is low, and in winter, when water temperatures generally drop below 15 C. This finding suggests that photooxidative death may be responsible for the sudden decomposition of blue-green blooms in summer, and may be a factor in the absence of blue-green blooms in winter.  相似文献   

6.
氯化钠胁迫导致蓝藻固氮活性的下降,可因加人适当浓度的氯化钠而有一定程度的缓解.在光合作用受抑(暗处理或添加光合抑制剂)、厌氧(Ar或N2中)和有分子氧的情况下,此种缓解作用减弱.光合作用、需氧代谢(通气)和羟化反应(同时供给氢和氧)正常进行以及碳架(添加外源蔗糖或提高CO2浓度)供应良好时,钙对氯化钠胁迫的缓解效应增大.改善合成固氮酶的物质基础供应(同时供应CO2和N2)对此也有一定的正效应.  相似文献   

7.
8.
Salinity has been suggested as being a controlling factor for blooms of N2-fixing cyanobacteria in estuaries. We tested the effect of salinity on the growth, N2 fixation, and photosynthetic activities of estuarine and freshwater isolates of heterocystous bloom-forming cyanobacteria. Anabaena aphanizomenoides and Anabaenopsis sp. were isolated from the Neuse River Estuary, North Carolina, and Cylindrospermopsis raciborskii from Lakes Dora and Griffin, central Florida. Salinity tolerance of these cyanobacteria was compared with that of two Nodularia strains from the Baltic Sea. We measured growth rates, N2 fixation (nitrogenase activity), and CO2 fixation at salinities between 0 and 20 g L(-1) NaCl. We also examined photosynthesis-irradiance relation-ships in response to salinity. Anabaenopsis maintained similar growth rates in the full range of salinities from 2 to 20 g L(-1) NaCl. Anabaena grew at up to 15 g L-', but the maximum salinity 20 g L(-1) NaCl was inhibitory. The upper limit for salinity tolerance of Cylindrospermopsis was 4 g L(-1) NaCl. Nodularia spp. maintained similar growth rates in the full range of salinities from 0 to 20 g L(-1) . Between 0 and 10 g L(-1), the growth rate of Nodularia spumigena was slower than that of the Neuse Estuary strains. In most strains, the sensitivity of nitrogenase activity and CO2 fixation to salinity appeared similar. Anabaenopsis, Anabaena, and the two Nodularia strains rapidly responded to NaCl by increasing their maximum photosynthetic rates (Pmn). Overall, both Neuse River Estuary and Baltic Sea strains showed an ability to acclimate to salt stress over short-(24 h) and long-term (several days to weeks) exposures. The study suggested that direct effect of salinity (as NaCl in these experiments) on cyanobacterial physiology does not alone explain the low frequency and magnitude of blooms of N2-fixing cyanobacteria in estuaries.  相似文献   

9.
Diel variations in N(2) fixation (acetylene reduction), CO(2) fixation, and oxygen concentrations were measured, on three separate occasions, in a marine microbial mat located on Shackleford Banks, North Carolina. Nitrogenase activity (NA) was found to be inversely correlated with CO(2) fixation and, in two of the three diel periods studied, was higher at night than during the day. Oxygen concentrations within the top 3 mm of the mat ranged from 0 to 400 muM on a diel cycle; anaerobic conditions generally persisted below 4 mm. NA in the mat was profoundly affected by naturally occurring oxygen concentrations. Experimentally elevated oxygen concentrations resulted in a significant depression of NA, whereas the addition of the Photosystem II inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea decreased oxygen concentrations within the mat and resulted in a significant short-term enhancement of NA. Mat N(2)-fixing microorganisms include cyanobacteria and heterotrophic, photoautotrophic, and chemolithotrophic eubacteria. Measured (whole-mat) NA is probably due to a combination of the NA of each of these groups of organisms. The relative contributions of each group to whole-mat NA probably varied during diel and seasonal (successional) cycles. Reduced compounds derived from photosynthetic CO(2) fixation appeared to be an important source of energy for NA during the day, whereas heterotrophic or chemolithotrophic utilization of reduced compounds appeared to be an important source of energy for NA at night, under reduced ambient oxygen concentrations. Previous estimates of N(2) fixation calculated on the basis of daytime measurements may have seriously underestimated diel and seasonal nitrogen inputs in mat systems.  相似文献   

10.
AIMS: The aim of the present investigation was to study the effects of different inorganic carbon and nitrogen sources on nitrate uptake and heterocyst differentiation in the culture of cyanobacterium Anabaena sp. PCC 7120. METHODS AND RESULTS: Anabaena was cultivated in media BG11 containing combined nitrogen and supplementary NaHCO3 or CO2. Cell growth, heterocyst differentiation, nitrate reductase (NR, EC 1.7.7.2), glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) and NO uptake were analysed. The cells cultivated in BG11(0) medium with aeration were taken as reference. Experimental results showed that the differentiation frequency of heterocysts when the cells were cultivated with elevated CO2 was higher than that of the cells grown with air or bicarbonate. Heterocysts appeared unexpectedly when CO2 was introduced into the medium containing nitrate. However, no heterocysts emerged when CO2 was added to medium containing NH or urea, or when NaHCO3 was supplied to the medium with nitrate. Both nitrate uptake rate and nitrate reduction enzyme activity were depressed by the supplement of CO2 to the culture. The activity of G6PDH was enhanced with the increase in heterocyst differentiation frequency. CONCLUSION: CO2 might compete with NO for energy and electrons in the uptake process and CO2 appears favoured. This led to a high intracellular C/N ratio and a relative N limitation. So the process of heterocyst differentiation was activated to supplement nitrogen uptake. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided an attractive possibility to form more heterocysts by rapid growth of Anabaena cells cultivated in the medium containing nitrate in order to increase nitrogen fixation and hydrogen production.  相似文献   

11.
The functional aspects of specific associations between bluegreen algae and bacteria were investigated using both naturally occurring and cultured species of Anabaena. In take waters where bacteria were associated with Anabaena heterocysls, the bacteria exhibited a chemotactic response to a variety of amino acids and glucose. Earlier autoradiographic evidence that bacteria associated with heterocysts incorporate identical substrates indicates that associated bacteria probably benefit by utilizing algal excretion products. In return, the bacteria stimulate algal N2fixation. The most likely mechanism explaining such stimulation appeared to be bacterial oxygen removal in microzones (< 3 μm diam) bordering heterocysts during periods of high ambient oxygen concentrations. In the presence of bacteria, Anabaena rapidly overcame nitrogenase- inhibiting concentrations of oxygen. Axenic cullures had more extensive nitrogenase inhibition, and took longer to recover in response to oxygenation. Algal-bacterial mutualism aids Anabaena in maintaining concurrent optimal N2 fixation and high photosynthetic rates in highly oxygenated surface waters.  相似文献   

12.
低温对氯化钠胁迫下蓝藻固氮活性的影响   总被引:1,自引:1,他引:0  
低温加剧氯化钠对蓝藻固氮的抑制,营养液中氯化钠浓度增高时,抑制程度更甚.能源受限(暗处理和加抑制剂时的光合受抑,N_2和Ar的厌氧下呼吸代谢受阻)和氧下固氮酶受到伤害时,低温处理使氯化钠对蓝藻固氮的抑制进一步加剧.在能源和还原剂供应,合成固氨酶蛋白的物质基础(如CO_2和N_2的加合).光合作用正常进行的条件得到改善和保证,以及供应CO_2、外源蔗糖和氮氧加合时,低温加剧氯化钠对蓝藻固氮的抑制程度明显变小.  相似文献   

13.
Fe emits low-energy X rays and Auger electrons by electron capture decay. Auger electrons are useful for autoradiographic examination of Fe incorporation among microbial communities. Attainable resolution, in terms of silver grain deposition, is excellent and comparable to H. Two known Fe-demanding processes, photosynthetic CO(2) fixation and N(2) fixation, were examined by autoradiography of Anabaena populations. During photosynthetically active (illuminated) N(2)-fixing periods, biological incorporation of FeCl(3) by vegetative cells and heterocysts was evident. When N(2) fixation was suppressed by NH(4) additions, heterocysts revealed no incorporation of Fe. Conversely, when N(2)-fixing Anabaena filaments were placed in darkness, Fe incorporation decreased in vegetative cells, whereas heterocysts showed sustained rates of Fe incorporation. Bacteria actively incorporated Fe under both light and dark conditions. The chelated (by Na(2)-ethylenediaminetetraacetate) form of FeCl(3) was more readily incorporated than the nonchelated form. Furthermore, abiotic adsorption of Fe to filters and nonliving particles proved lower when chelated Fe was used in experiments. Fe autoradiography is useful for observing the fate and cellular distribution of various forms of Fe among aquatic microbial communities.  相似文献   

14.
Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 microM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity.  相似文献   

15.
The oceans globally constitute an important sink for carbon dioxide (CO(2)) due to phytoplankton photosynthesis. However, the marine environment imposes serious restraints to carbon fixation. First, the equilibrium between CO(2) and bicarbonate (HCO(3)(-)) is pH dependent, and, in normal, slightly alkaline seawater, [CO(2)] is typically low (approximately 10 mum). Second, the rate of CO(2) diffusion in seawater is slow, so, for any cells unable to take up bicarbonate efficiently, photosynthesis could become carbon limited due to depletion of CO(2) from their immediate vicinity. This may be especially problematic for those dinoflagellates using a form II Rubisco because this form is less oxygen tolerant than the usually found form I enzyme. We have identified a carbonic anhydrase (CA) from the free-living marine dinoflagellate Lingulodinium polyedrum that appears to play a role in carbon acquisition. This CA shares 60% sequence identity with delta-class CAs, isoforms so far found only in marine algae. Immunoelectron microscopy indicates that this enzyme is associated exclusively with the plasma membrane. Furthermore, this enzyme appears to be exposed to the external medium as determined by whole-cell CA assays and vectorial labeling of cell surface proteins with (125)I. The fixation of (14)CO(2) is strongly pH dependent, suggesting preferential uptake of CO(2) rather than HCO(3)(-), and photosynthetic rates decrease in the presence of 1 mm acetazolamide, a non-membrane-permeable CA inhibitor. This constitutes the first CA identified in the dinoflagellates, and, taken together, our results suggest that this enzyme may help to increase CO(2) availability at the cell surface.  相似文献   

16.
The effects were studied of both nitrogen and phosphorus limitation and irradiance on the performance and operation of photosynthesis in tomato leaves (Lycopersicon esculentum Mill.). Plants were grown at low N, high N, low P or high P supply and at two irradiances. Using mature leaves, measurements were made of the irradiance dependencies of the relative quantum efficiencies of photosystems I and II, and of the rate of carbon dioxide fixation. Measurements were also made of foliar starch and chlorophyll concentrations. The results showed that photosynthetic light-harvesting and electron-transport activity acclimate to nutrient stress and growth irradiance such that the internal relationships between electron transport by photosystems I and II do not change; the linear relationship between PhiPSII, and PhiPSI was not affected. It was also evident that under N stress photosynthesis was reduced by a decreased light absorption and by the decreased utilization of assimilates, while P stress mainly affected the carboxylation capacity. Under N stress foliar starch levels increased and the oxygen sensitivity of CO2 fixation decreased, whereas P stress resulted in decreased starch levels and increased oxygen sensitivity of CO2 fixation. The relationship between starch accumulation and oxygen sensitivity (increased starch correlated with decreased oxygen sensitivity) was always the same across the nutrient treatments. These results are consistent with N deprivation producing an increasing limitation of photosynthesis, possibly by feedback from the leaf carbohydrate pool, whereas, although P deprivation produces a decreased rate of CO2 fixation, this is accompanied by a increase in oxygen sensitivity, suggesting that feedback limitation is decreased under P stress.  相似文献   

17.
Chemoautotrophic symbioses, in which endosymbiotic bacteria are the major source of organic carbon for the host, are found in marine habitats where sulfide and oxygen coexist. The purpose of this study was to determine the influence of pH, alternate sulfur sources, and electron acceptors on carbon fixation and to investigate which form(s) of inorganic carbon is taken up and fixed by the gamma-proteobacterial endosymbionts of the protobranch bivalve Solemya velum. Symbiont-enriched suspensions were generated by homogenization of S. velum gills, followed by velocity centrifugation to pellet the symbiont cells. Carbon fixation was measured by incubating the cells with (14)C-labeled dissolved inorganic carbon. When oxygen was present, both sulfide and thiosulfate stimulated carbon fixation; however, elevated levels of either sulfide (>0.5 mM) or oxygen (1 mM) were inhibitory. In the absence of oxygen, nitrate did not enhance carbon fixation rates when sulfide was present. Symbionts fixed carbon most rapidly between pH 7.5 and 8.5. Under optimal pH, sulfide, and oxygen conditions, symbiont carbon fixation rates correlated with the concentrations of extracellular CO(2) and not with HCO(3)(-) concentrations. The half-saturation constant for carbon fixation with respect to extracellular dissolved CO(2) was 28 +/- 3 microM, and the average maximal velocity was 50.8 +/- 7.1 micromol min(-1) g of protein(-1). The reliance of S. velum symbionts on extracellular CO(2) is consistent with their intracellular lifestyle, since HCO(3)(-) utilization would require protein-mediated transport across the bacteriocyte membrane, perisymbiont vacuole membrane, and symbiont outer and inner membranes. The use of CO(2) may be a general trait shared with many symbioses with an intracellular chemoautotrophic partner.  相似文献   

18.
Carbon dioxide supersaturation promotes primary production in lakes   总被引:2,自引:0,他引:2  
A majority of the world's lakes are supersaturated with respect to carbon dioxide (CO(2) ). By experimental manipulation of the CO(2) concentration in supersaturated boreal lakes, we demonstrate that phytoplankton primary production was up to 10 times higher in supersaturated lake water in comparison with water with CO(2) at equilibrium concentrations and that CO(2) , together with nutrients, explained most of the variation in pelagic primary production and phytoplankton biomass over a wide variety of unproductive lakes. These results suggest that phytoplankton can be co-limited by CO(2) and nutrients in unproductive lakes. As import of terrestrial organic carbon and its subsequent microbial mineralisation in lakes is a driving force of CO(2) -supersaturation our results suggest that lake productivity and carbon cycling may respond to variations in terrestrial organic carbon export, (e.g. caused by land use or climate change) in ways not described before.  相似文献   

19.
Drought stress is one of the major factors affecting nitrogen fixation by legume-rhizobium symbiosis. Several mechanisms have been previously reported to be involved in the physiological response of symbiotic nitrogen fixation to drought stress, i.e. carbon shortage and nodule carbon metabolism, oxygen limitation, and feedback regulation by the accumulation of N fixation products. The carbon shortage hypothesis was previously investigated by studying the combined effects of CO2 enrichment and water deficits on nodulation and N2 fixation in soybean. Under drought, in a genotype with drought tolerant N2 fixation, approximately four times the amount of 14C was allocated to nodules compared to a drought sensitive genotype. It was found that an important effect of CO2 enrichment of soybean under drought was an enhancement of photo assimilation, an increased partitioning of carbon to nodules, whose main effect was to sustain nodule growth, which helped sustain N2 rates under soil water deficits. The interaction of nodule permeability to O2 and drought stress with N2 fixation was examined in soybean nodules and led to the overall conclusion that O2 limitation seems to be involved only in the initial stages of water deficit stresses in decreasing nodule activity. The involvement of ureides in the drought response of N2 fixation was initially suspected by an increased ureide concentration in shoots and nodules under drought leading to a negative feedback response between ureides and nodule activity. Direct evidence for inhibition of nitrogenase activity by its products, ureides and amides, supported this hypothesis. The overall conclusion was that all three physiological mechanisms are important in understanding the regulation of N2 fixation and its response of to soil drying.  相似文献   

20.
A whole-ecosystem experiment in Lake 227 (L227) at the Experimental Lakes Area, ongoing since 1969, examined the roles of carbon (C), nitrogen (N), and phosphorus (P) in controlling eutrophication. During 2011, we conducted a series of sub-experiments and more intensive monitoring to improve estimates of N fixation and its ability to meet algal growth demands in the decades following the cessation of artificial N loading, while maintaining long-term high artificial P loading. Stoichiometric nutrient ratios indicated both moderate N and P limitation of the phytoplankton during spring, preceding a shift in phytoplankton community structure toward dominance by N fixing cyanobacteria. During bloom development, and for the remainder of the stratified period, stoichiometric nutrient ratios indicated moderate to strong P limitation. N fixation rates, corrected using 15N2 methods, increased 2× after 1990, when N loading ceased. Ambient dissolved inorganic nitrogen prior to the bloom represented less than 3% of N demands of the phytoplankton. N fixation accounted for between 69–86% of total N loading to the epilimnion during the period of rapid bloom development, and 72–86% of total N loading during the May–October period. Phytoplankton biomass did not decline in L227 during the 40 years since artificial N loading was reduced, or the nearly 25 years since artificial N loads ceased entirely (1990–2013), and remained approximately 20× higher than four nearby reference lakes. These results suggest that despite constraints on biological N fixation, it retains a large capacity to offset potential N loading reductions in freshwaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号