首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to examine the genesis of the characteristic flavors of soy sauce and miso, seven novel halotolerant yeast strains of two types, which showed convertibility of ferulic acid (FA) to 4-vinylguaiacol (4-VG) and to 4-ethylguaiacol (4-EG), were isolated from miso-koji and miso pastes. Two of these strains were identified as Candida guilliermondii (anamorph of Pichia guilliermondii), and Candida fermentati (anamorph of Pichia caribbica), based on sequence analyses of a partial 26S ribosomal RNA gene and the region of internal transcribed spacers 1 and 2, and the 5.8S ribosomal RNA gene. Moreover, we also found three Candida etchellsii strains which showed convertibility of FA to 4-VG, but not to 4-EG, and two atypical strains of Candida versatilis which showed no convertibility of FA to 4-VG, but did show convertibility of 4-VG to 4-EG from soy sauce mashes. The bioconversion pathway from FA to 4-EG via 4-VG in halotolerant yeasts and bacteria is discussed.  相似文献   

2.
Pichia caribbica sp. nov. (type strain DBVPG 4519, NRRL Y-27274, CBS 9966) is described as the ascosporic state of Candida fermentati, and Candida guilliermondii var. carpophila (type strain DBVPG 7739, NRRL Y-17905, CBS 5256) is elevated to species status as Candida carpophila comb. nov. These new taxa, which are indistinguishable on the basis of conventional taxonomic criteria, differ from one another and from Pichia guilliermondii by low DNA base sequence relatedness, different electrophoretic karyotypes, and nucleotide divergence in domains D1/D2 of 26S rDNA. Pichia caribbica produces one, rarely two, saturn-shaped ascospores in persistent asci. On the basis of molecular criteria, C. carpophila comb. nov., C. fukuyamaensis, and C. xestobii are conspecific, with the name C. carpophila having taxonomic priority.  相似文献   

3.
In this report, strains of five different Candida species (Candida albicans, Candida guilliermondii, Candida tropicalis, Candida krusei, and Candida parapsilosis) isolated from healthy human oral cavities as well as their respective type-strains were used in order to establish the genetic diversity existing among the different species and within a certain species, by the analysis of their electrophoretic alloenzyme patterns. These profiles were analyzed for their band positions in the gels, which allowed to group the strains of the same species in species-specific clusters and to treat them as conspecific populations. A total of thirteen enzymatic loci were obtained (ACO, ADH1, ADH2, CAT, G6PDH, GDH, GOT, IDH1, IDH2, LAP, LDH, PER, and SOD). The allelic frequencies (p) and the heterozygosity (h) for all the thirteen loci were determined by diversity index formulas. The GST index is the estimated proportion of genetic diversity that was applied in order to establish inter and intra populational diversity, which, for our results, indicated that 37.75% of total genetic diversity was attributable to differences among the species and the remaining 62.25% was attributable to differences within these populations. An Euclidian distance dendrogram for the different conspecific populations was built, showing that C. guilliermondii grouped first with C. tropicalis and thus formed a expanded cluster with C. albicans. This cluster combined later with another one composed by C. parapsilosis and C. krusei. Comparing our results to the others that were obtained by different molecular techniques, we have observed that the clustering hierarchies follow different paths of organization, varying according to the methodology employed.  相似文献   

4.
Fermentation and aerobic metabolism of cellodextrins by yeasts.   总被引:1,自引:1,他引:0       下载免费PDF全文
The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wickerhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization less than or equal to 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettano-myces claussenii, B. anomalus, K. dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization greater than 3 produced an enzyme(s) that hydrolyzed cellotretose.  相似文献   

5.
The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wickerhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization less than or equal to 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettano-myces claussenii, B. anomalus, K. dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization greater than 3 produced an enzyme(s) that hydrolyzed cellotretose.  相似文献   

6.
The purpose of this work was to evaluate biochemical and serological methods to characterize and identify Candida species from the oral cavity. The strains used were five Candida species previously identified: C. albicans, C. guilliermondii, C. parapsilosis, C. krusei, C. tropicalis, and Kluyveromyces marxianus, as a negative control. The analyses were conducted through the SDS-PAGE associated with statistical analysis using software, chromogenic medium, and CHROMagar Candida (CA), as a differential medium for the isolation and presumptive identification of clinically important yeasts and an enzyme-linked immunoabsorbent assay (ELISA), using antisera produced against antigens from two C. albicans strains. This method enabled the screening of the three Candida species: C. albicans, C. tropicalis, and C. krusei, with 100% of specificity. The ELISA using purified immunoglobulin G showed a high level of cross-reaction against protein extracts of Candida species. The SDS-PAGE method allowed the clustering of species-specific isolates using the Simple Matching coefficient, S(SM) = 1.0. The protein profile analysis by SDS-PAGE increases what is known about the taxonomic relationships among oral yeasts. This methodology showed good reproducibility and allows collection of useful information for numerical analysis on information relevant to clinical application, and epidemiological and systematical studies.  相似文献   

7.
8.
Candida guilliermondii is an opportunistic emerging fungal agent of candidiasis often associated with oncology patients. This yeast also remains an interesting biotechnological model for the industrial production of value-added metabolites. The recent whole-genome sequencing of the C. guilliermondii ATCC 6260 reference strain provides an interesting resource for elucidating new molecular events supporting pathogenicity, antifungal resistance and for exploring the potential of yeast metabolic engineering. In the present study, we designed an efficient transformation system for C. guilliermondii wild-type strains using both nourseothricin- and hygromycin B-resistant markers. To demonstrate the potential of these drug-resistant cassettes, we carried out the disruption and the complementation of the C. guilliermondii FCY1 gene (which encodes cytosine deaminase) known to be associated with flucytosine sensitivity in yeast. These two new dominant selectable markers represent powerful tools to study the function of a large pallet of genes in this yeast of clinical and biotechnological interest.  相似文献   

9.
An in vitro susceptibility testing of 181 strains of six species of Candida and 21 strains of Cryptococcus neoformans was carried out in order to investigate the resistance to new antifungal drugs. We have studied clinical isolates from 200 different patients of Hospital del Mar (Barcelona) and Hospital La Inmaculada (Almería). An agar diffusion method (NeoSensitabs, Rosco, Taastrup, Denmark), was employed with fluconazole, itraconazole, and reference drugs amphotericin B, flucytosine, tioconazole and ketoconazole. A high level of susceptibility was found for amphotericin B in C. neoformans strains while 19% of them were resistant to flucytosine. All the strains of C. neoformans and Candida guilliermondii were susceptible to the new azoles derivatives and also Candida parapsilosis and Candida albicans had a great susceptibility to this antifungals. A greater level of resistance was found for Candida krusei, Candida tropicalis and Candida glabrata to fluconazole, itraconazole and ketoconazole, but resistance to fluconazole and itraconazole is not always linked because ten resistant strains for fluconazole were susceptible to itraconazole, and two other resistant to itraconazole were susceptible to fluconazole.  相似文献   

10.
白逢彦  贾建华 《菌物学报》2001,20(4):471-474
用脉冲电泳对四种假丝酵母及各自的有性型,包括Candida guilliermondii—Pichia guilliermondii, Candida krusei—Issatchenkia orientalis, Candida naganishii—Debaryomyces nepalensis和Candida valida—Pichia membranaefaciens,进行了分子核型比较分析, 发现每对无性型-有性型酵母菌均具有相同或相似的染色体DNA分子带型, 而各对之间却具有显著差异,显示了脉冲电泳核型分析在寻找及确证酵母菌无性型-无性型关联中的应用价值。  相似文献   

11.
Whole-cell proteins from isolates of five Candida species (Candida albicans, Candida krusei, Candida parapsilosis, Candida tropicalis and Candida guilliermondii) were separated by SDS-PAGE and the profiles obtained were converted into a binary data matrix that produced a cophenetic correlation phenogram. The analysis of the phenogram allowed detection of the cophenetic correlation levels existing among these species.  相似文献   

12.
Candidiasis is a frequent human infection caused mainly by Candida albicans. However, other species are emerging as important pathogens, as Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei or Candida guilliermondii. Rapid identification of clinical isolates could facilitate diagnosis and treatment. Candida ID (bioMerieux, Spain) is a new medium for the isolation and presumptive identification of yeasts: C. albicans grows as blue colonies, and C. tropicalis, C. guilliermondii, Candida kefyr and Candida lusitaniae as pink ones. The utility of Candida ID was evaluated with more than 700 clinical isolates and type culture collection strains from different genera including Candida, Cryptococcus, Saccharomyces, and Rhodotorula. Presumptive identification was confirmed by germ tube test, microscopic morphology and chlamydoconidia production on corn meal agar and carbohydrate assimilation on API-ATB ID 32C or Vitek (bioMerieux). Growth on Candida ID was rapid (18-24 h) for most of the yeast strains tested. Sensitivity and specificity of identification of C. albicans was significantly high (>98%), since a very low number of isolates were found to be false negative or false positive. A better result was obtained for species growing as pink colonies (>99.5%). Detection of different species of medical important yeasts was easy with Candida ID, as perfectly distinct colors and textures of colonies were observed on this medium. Candida ID allowed the discrimination between C. glabrata (creamy and smooth) and C. krusei (rough and white) colonies. Other species showed different colony textures and colours, white being the predominant colour. Candida ID was very useful for the presumptive identification C. albicans isolates.  相似文献   

13.
Two agglutinating IgM mAb against mannan Ag of Candida albicans strains were investigated for their specificity. The agglutinating patterns of both mAb with a panel of stationary phase of yeast cells of standard strains did not match those of any known polyclonal antibody (PAb) factors. The reactive patterns of both mAb for a given panel of 202 isolates of seven Candida species and the mode of competitive binding between mAb and a PAb factor, as determined by a combination of direct and indirect immunofluorescence staining, demonstrated that the two mAb were a part of PAb factor 4 (a prescribed reactive pattern of adsorbed PAb) but were different from each other in their specificity. The thereby designated mAb 4b and 4c were tested under PAb factor 4-positive Candida strains and further division into two to three serotypes of each species were made. 1H-Nuclear magnetic resonance spectra (500 MHz) of purified neutral mannans from strains of each serotype showed that although the 1H-nuclear magnetic resonance spectra of mannans from two subtypes of C. albicans serotype A and from each of two serotypes of Candida guilliermondii and Candida glabrata were identical or similar, the two mAb were still able to distinguish their fine determinant structures. Our findings suggest that mAb with entirely identical specificity cannot be produced against even the same determinant groups of mannan. In addition, the fact that microheterogeneity may occur without limit in the mannans of the strains suggests that antibodies with unlimited diverse specificities are produced directed against these antigenic varieties as well.  相似文献   

14.
Physiological responses during growth on xylose and the xylose-degrading pathway of Candida tropicalis and Candida guilliermondii yeasts were investigated. The responses to a linearly decreasing oxygen transfer rate and a simultaneously increasing dilution rate were compared. C. guilliermondii produced acetate but no ethanol, and C. tropicalis ethanol but no acetate under oxygen limitation. Both strains produced glycerol. The D-xylose reductase of C. guilliermondii is exclusively NADPH-dependent. and acetate production regenerated NADPH. The xylose'reductase of C. tropicalis has a dual dependency for both NADH and NADPH. It regenerated NAD by producing ethanol. Both strains regenerated NAD by producing glycerol. The effect of intracellular NADH accumulation to xylose uptake and metabolite production was studied by using formate as a cosubstrate. Formate feeding in C. tropicalis triggered the accumulation of glycerol, ethanol and xylitol. Consequently, the specific xylose consumption increased 28% during formate feeding, from 477 to 609 C-mmol/C-mol cell dry-weight (CDW)/h. In C. guilliermondii cultures. formate feeding resulted only in glycerol accumulation. The specific xylose consumption increased 6%, from 301 to 319 C-mmol/C-mol CDW/h, until glycerol started to accumulate.  相似文献   

15.
Non-albicans Candida species cause 35-65% of all candidemias in the general population, especially in immunosuppressed individuals. Here, we describe a case of a 19-year-old HIV-infected man with pneumonia due to a yeast-like organism. This clinical yeast isolate was identified as Candida guilliermondii through mycological tests. C. guilliermondii was cultivated in brain heart infusion medium for 48 h at 37 degrees C. After sequential centrifugation and concentration steps, the free-cell culture supernatant was obtained and extracellular proteolytic activity was assayed firstly using gelatin-SDS-PAGE. A 50 kDa proteolytic enzyme was detected with activity at physiological pH. This activity was completely blocked by 10 mM phenylmethylsulphonyl fluoride (PMSF), a serine proteinase inhibitor, suggesting that this extracellular proteinase belongs to the serine proteinase class. E-64, a strong cysteine proteinase inhibitor, and pepstatin A, a specific aspartic proteolytic inhibitor, did not interfere with the 50 kDa proteinase. Conversely, a zinc-metalloproteinase inhibitor (1,10-phenanthroline) restrained the proteinase activity released by C. guilliermondii by approximately 50%. Proteinases are a well-known class of enzymes that participate in a vast context of yeast-host interactions. In an effort to establish a functional implication for this extracellular serine-type enzyme, we investigated its capacity to hydrolyze some serum proteins and extracellular matrix components. We demonstrated that the 50 kDa exocellular serine proteinase cleaved human serum albumin, non-immune human immunoglobulin G, human fibronectin and human placental laminin, generating low molecular mass polypeptides. Collectively, these results showed for the first time the ability of an extracellular proteolytic enzyme other than aspartic-type proteinases in destroying a broad spectrum of relevant host proteins by a clinical species of non-albicans Candida.  相似文献   

16.
Electrophoretic karyotypes and chromosome numbers in Candida species   总被引:35,自引:0,他引:35  
The electrophoretic karyotypes of five Candida albicans isolates and of five other Candida species have been determined, using orthogonal field alternating gel electrophoresis (OFAGE). None of the C. albicans isolates had the same electrophoretic karyotype. By comparing all five strains, we arrived at a chromosome number of nine to ten, but since the organism is diploid, we cannot distinguish genetically different chromosomes from homologues which resolve. We determined minimal chromosome numbers of 9 for Candida stellatoidea, 10 for C. glabrata and 6 for C. guilliermondii.  相似文献   

17.
E N Makarova 《Mikrobiologiia》1975,44(6):1025-1029
The effect of thiamine and biotin on the processes of cell division, assimilation of glucose, and accumulation of the biomass and nitrogen in the cells was studied with the Candida yeast. The action of the vitamins depended on the source of nitrogen. In some strains, asparagine can substitute for biotin. Biotin has different effect on the production of gamma-aminobutyric acid in Candida pulcherrima, C. guilliermondii. C. tropicalis K3-10. High concentrations of arginine were found in C. guilliermondii var. membranaefaciens in the presence of biotin. The vitamins did not favour the assimilation of nitrate nitrogen in species which were not adapted to this source of nitrogen.  相似文献   

18.
Candida was isolated in 205 of 1060 clinical specimens (19.33%) in our laboratary sent from the intensive care unit for mycological investigation between January 98-December 99. All isolated strains were identified to species level using the API Candida system (Bio-Meieux, France) as follows; Candida albicans (n:115, 56.09%), Candida tropicalis (n:23, 11.21%), Candida parapsilosis (n:21, 10.24%), Candida glabrata (n:12, 5.83%). Candida kefyr (n:9, 4.39%), Candida lusitaniae (n:7, 3.41%), Candida famata (n:6, 2.92%), Candida krusei (n:6, 2.92%), Candida guilliermondii (n:6, 2.92%). These stains were identified using congo-red-glucose-brain-heart-infusion agar and slime production was determined in Candida albicans 53.91% and 67.77% in other than Candida species. In the present study, E test (AB Biodisk, Solna, Sweeden) was used to test antifungal susceptibility. The resistance to amphotericin B was 19.51%, to fluconazole 27.31% and to flucytosine 20.00%.  相似文献   

19.
AIMS: To discover novel naturally occurring xylitol producing yeast species with potential for industrial applications. METHODS AND RESULTS: Exactly 274 strains were cultivated on both solid and liquid screening medium with xylose as the sole carbon resource. Five strains were selected on the basis of significant growth and high degree of xylose assimilation. Their phylogenetic position was confirmed by the PCR-RFLP and sequence analysis of the D1/D2 domain of the 5' end of the large subunit rDNA gene (5'-LSU rDNA). Enzymatic analysis was conducted to compare xylose metabolism in each strain. Candida guilliermondii Xu280 and Candida maltosa Xu316 were found to have high xylose consumption rates and xylitol yields in the batch fermentation under micro-aerobic condition. The effect of the different media with high initial xylose concentration on biosynthesis of xylitol by both strains was investigated. CONCLUSIONS: We have identified Candida spp. strains, which exhibit high levels of xylitol production from xylose suggesting that these may have potential for industrial applications. SIGNIFICANCE AND IMPACTS OF THE STUDY: Microbial species are of importance for xylitol production. Xylitol production involves complicated metabolic regulation including xylose transport, production of key enzymes and cofactor regeneration. Thus, screening of naturally occurring xylose-utilizing micro-organisms is a viable and effective mean to obtain xylitol producing organisms with industrial application. Moreover, the research on selected strains will contribute to a better understanding of regulatory properties of xylose metabolism in different yeasts.  相似文献   

20.
Six strains of anamorphic yeasts isolated from insect frass collected in several regions of Thailand were assigned to the genus Candida based on the conventional taxonomic criteria used for yeast classification. These strains have Q-7 as the major ubiquinone and are suggested to have close relationships to the genus Pichia. Three strains, ST-225, ST-228 and ST-229, have identical nucleotide sequences in the D1/D2 domain of 26S rDNA and are closely related to Pichia japonica, but differ by six nucleotides (1.1% ) from this species. These three strains are considered to represent a single new species, which is described as Candida easanensis sp. nov. Two strains, ST-311 and ST-320, have identical sequences in the D1/D2 domain and resemble Pichia veronae and Pichia fabianii but differ from them by nine nucleotides (1.6%) in D1/D2 sequences. The two strains are described as Candida pattaniensis sp. nov. The remaining strain, ST-37, is related to Pichia americana and Pichia bimundalis but differs by six(1.1%) and seven (1.2%) nucleotides from these species, respectively. This strain is described as Candida nakhonratchasimensis sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号